A-160-5 Voltage Controlled Clock Multiplier / Ratcheting Controller

Ratcheting Controller sind immer noch etwas ungewöhnliche Tools in der Modularwelt. Dabei haben bereits Tangerine Dream vor fast 50 Jahren ihre Sequencen mit ihnen spannend gestaltet.

Was macht ein Ratcheting Controller? Im Grunde haben wir das Gegenteil von einem Clock-Divider (wie etwa dem A-160-2) vor uns: Ein eingehendes Clock-Signal wird vervielfältigt, und zwar nach Möglichkeit so, dass die ausgegebene Clock auch rhythmisch-musikalisch zur ursprünglichen Clock passt. Im Gegensatz zum Clock-Divider kann die Elektronik dabei nicht einfach „abzählen“ und z.B. bei jedem vierten Eingangs-Trigger selbst ein Triggersignal ausgeben, sondern muss die durchschnittliche Frequenz der Eingangs-Trigger berücksichtigen und daraus eine eigene – vervielfachte – Trigger-Frequenz berechnen. Das bedeutet aber auch, dass sich Tempoänderungen bzw. Schwankungen der Eingangsfrequenz auf das vervielfachte Clock-Signal auswirken: Der A-160-5 benötigt etwas mehr Zeit, um sich an das neue Clock-Signal anzupassen, als ein einfacher Frequenzteiler.

Ratcheting

Das eigentliche Ratcheting geht aber über eine Vervielfachung des Eingangs-Clocksignals hinaus. Ansonsten könnte man ja auch einfach ein schnelleres Clocksignal wählen und für die langsamere Variante (die unserem A-160-5 als Eingangssignal dient) dann einen einfachen Clockteiler. Beim Ratcheting werden aber nur einzelne Schritte einer Sequenz mit einem schnelleren Clock-Trigger versehen und danach geht es wieder zurück zur ursprünglichen Geschwindigkeit.

Um das automatisiert zu steuern, verfügt der A-160-5 über einen Steuerspannungseingang: Hier kann man den Sequencer selbst oder einen zum Sequencer synchron laufenden Zufallsgenerator anschließen, die dann die Zahl der Trigger-Impulse für jeden Schritt der Sequenz festlegen.

Als Eingangs-Clocksignal für den A-160-5 sollte man tatsächlich einen Clock-Trigger mit konstanter Frequenz verwenden und nicht etwa einen der Trigger/Gate-Ausgänge des A-155 Sequencers: Das Auslassen eines Triggers im Sequencer über einen der 8 Kontrollschalter des A-155 würde den A-160-5 sonst ziemlich „aus dem Takt“ bringen. Man kann dennoch einzelne Sequencer-Schritte komplett auslassen, da der A-160-5 bei einer Steuerspannung von 0 V am „CV In“ Eingang die Erzeugung von Triggersignalen stoppt. Falls keine Spannungssteuerung verwendet wird: Bei komplett nach links gedrehtem „Manual“-Regler stoppt ebenfalls die Ausgabe von Triggersignalen.

Bedienelemente

Eingänge:

CTRL-A160-5-IN

Ausgänge:

CTRL-A160-5-OUT

Regler / Schalter:

CTRL-A160-5-SW

Versionsunterschiede

Die erste Auflage des A-160-5 hatte, wie bereits erwähnt, noch eine falsche Beschriftung „Divider Set“ anstatt „Multiplier Set“ neben dem Schalter für die verschiedenen Multiplizier-Reihen. Doepfer hat daneben aber auch einen kleinen Fehler im Zusammenspiel mit einem Sequencer ausgeräumt. In der ersten Auflage des Moduls hatte eine geänderte Steuerspannung erst auf den darauf folgenden Sequencer-Schritt Auswirkung. Wenn man das weiß, ist es keine große Sache, aber bequemer (weil intuitiver!) ist das Verhalten der aktuellen Produktion des A-160-5, der eine geänderte Steuerspannung sofort umsetzt (und nicht erst im darauf folgenden Schritt wie die Erstauflage).

Klangbeispiele

Ein A-155 / A-154 Sequencer steuert einen A-111-5 Mini Syntesizer. Das Clock-Signal aus dem A-154 wird als Einangs-Clock für den A-160-5 verwendet. Die obere Spur des A-155 steuert (über einen A-156 Quantizer) die Tonhöhe des A-111-5, die untere Spur des A-155 ist das Steuersignal für das Ratcheting des A-160-5, der die Hüllkurve des A-111-5 auslöst. Die Steuerspannungen für das Ratcheting werden manuell verändert.

Typische Ratcheting-Sequenz mit dem A-160-5.

Neben dem Einsatz als Clock-Multiplier lässt sich der A-160-5 auch in gewissem Rahmen als Audio-Multiplier einsetzen. Dazu wird ein Audiosignal – idealerweise eine Rechteckschwingung – als Clocksignal verwendet, hier von einem A-110-1 VCO.

Audio-Multiplier. Die Audio-Transponierungen werden manuell durchfahren.

Technische Daten

Breite4 TE
Tiefe35 mm
Strombedarf50 mA (+12V) / -0 mA (-12V)

A-160-2 Clock/Trigger Divider II

Der A-160-2 macht eigentlich genau das, was ich mir immer von einem Clock-Teiler gewünscht hatte. Er teilt ein eingehendes Clock-Signal auf „musikalische“ Weise. Was ist damit gemeint? Ein einfacher Clock-Teiler wie der alte A-160-1 zählt sozusagen die Eingangs-Trigger und teilt immer in zwei gleich große Hälften, je nach Teilfaktor. Bei einer Teilung durch 4 zum Beispiel wird der Clock-Teiler vier Eingangs-Trigger in zwei Hälften teilen, also seinen eigenen Trigger vom dritten bis vierten Eingangs-Trigger (bzw. bis zum Ende von dessen Null-Level) ausgeben. Das ist genau ein Viertel. Bei 1/8 wird der Ausgangs-Trigger vom fünften bis achten Eingangs-Trigger aktiviert. Und auch diese eine (lange) Ausgangs-Trigger ist genau ein Achtel.

Das ist mathematisch korrekt, aber die meiste Musik, die wir machen, tickt anders. Wenn die Eingangs-Trigger Viertelnoten entsprechen, dann wünschen wir uns meist, dass der durch 4 geteilte Trigger den ganzen Noten entspricht. Da wäre dann ein Trigger auf dem ersten, dem fünften, dem neunten und dem dreizehnten Eingangs-Trigger. Und genau das macht der A-160-2 Clock/Trigger Divider.

Bedienelemente

Eingänge:

CTRL-A160-2-IN

Ausgänge:

CTRL-A160-2-OUT

Regler / Schalter:

CTRL-A160-2-SW

Wie wird geteilt?

Anders als der A-160-1 erzeugt der A-160-2 seinen ersten Ausgangs-Trigger bereits beim ersten Eingangs-Trigger. Das liegt uns musikalisch näher, weil es den abgeleiteten Triggger schon „auf der 1“ erzeugt und nicht erst später.

Sehen wir und das einmal im „GATE“-Modus des A-160-2 im Oszilloskop an:

Unten sehen wir den Eingangs-Trigger, oben das Ausgangs-Signal bei einer Teilung durch 3. Der Divider teilt drei eingehende Ein- und Aus-Signale symmetrisch auf und erzeugt während der ersten Hälfte ein Trigger-Signal und während der zweiten Hälfte ein Null-Signal, also keinen Trigger. Bedingt durch die dafür erforderlichen Rechenoperationen sehen wir einen minimalen Versatz bei den ansteigenden und abfallenden Flanken des Ausgangssignals.

Der „GATE“-Modus teilt – wie konventionelle Clock-Divider – die Eingangssignale immer in zwei gleich große Hälften für sein Ein- und Aus-Signal. Daneben gibt es noch einen zweiten Modus „TRIG“, der die Länge des Eingangssignals in das Ausgangssignal übernimmt:

„TRIG“-Modus bei einer 1/5-Teilung. Unten ist wieder der Eingangs-Trigger, oben das vom A-160-2 erzeugte Signal.
Zum Vergleich: „GATE“-Modus ebenfalls bei 1/5-Teilung. Unten ist wieder der Eingangs-Trigger, oben das vom A-160-2 erzeugte Signal.

Der Custom Modus „Cst“ ist offiziell noch nicht implementiert, bei meinen A-160-2 Modulen gibt er eine invertierte Version des „TRIG“-Modus aus, also ein kurzes Triggersignal bei den entsprechenden „Null“-Phasen des Eingangs-Triggers.

„Cst“-Modus (invertierter „TRIG“-Modus) bei 1/5-Teilung. Unten ist wieder der Eingangs-Trigger, oben das vom A-160-2 erzeugte Signal.

Verschiedene Teilungs-Reihen

Die üblichen Frequenz- oder Clockteiler halbieren einfach. Bei Audiosignalen ist das eine Oktave darunter, bei Clocksignalen halbe Geschwindigkeit. Das kann man mehrfach wiederholen und erhält weitere Suboktaven oder 1/4 oder 1/8, 1/16 usw. der Clock-Geschwindigkeit. So arbeitet auch der A-160-1 mit den bereits bekannten „Merkwürdigkeiten“ bei der Ausgabe der geteilten Clock-Signale.

Der A-160-2 bietet das ebenfalls – als eine von 3 Optionen – an. In der oberen Schalterstellung für die Teilungs-Reihen erzeugt er an den Ausgangsbuchsen die Teilungen 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 und 1/128.

Aber das Modul kann natürlich mehr.

In der mittleren Schalterposition werden Primzahlen als Teiler ausgegeben: 1/2 (klar, die kommt immer vor), 1/3 (die Eingangs-Clock wird als Triole zusammengefasst), 1/5, 1/7, 1/11, 1/13 und 1/17. Primzahlen als Teiler führen zu einem maximalen „Auseinanderdriften“ der rhythmischen Struktur. Bis sich z.B. eine durch 11 und eine durch 13 geteilte Eingangs-Clock wieder zur gleichen Zeit treffen, vergehen 11 x 13, also 141 Eingangs-Clocksignale. Das ist ideal für polyrhythmische Strukturen.

In der unteren Schalterposition entstehen jeweils um 1 weiter gezählte Teiler: 1/2 (klar), 1/3, 1/4, 1/5, 1/6, 1/7 und 1/8. Hier treffen so manche Teiler öfter aufeinander als bei den Primzahlen, wir bewegen uns also auf etwas gewohnterem Boden, aber man kann trotzdem rhythmisch interessante Strukturen damit aufbauen.

Klangbeispiele: Rhythmische Strukturen

Für die Klangbeispiele wird ein Eingangstrigger aus einem A-155 Sequencer gewonnen (der außer den Triggersignalen aber sonst nichts beisteuert). Mehrere Ausgänge des A-160-2 triggern die Decay-Hüllkurven eines A-142-4 Quad Decay, die wieder vier Verstärker in zwei A-132-3 VCAs steuern. Klangmaterial für die VCAs: Digitale und analoge Rauschgeneratoren, ein A-105 Filter als „Bassdrum“, etwas Nachbearbeitung durch Filter und ein BBD.

Das erste Beispiel verwendet die „normale“ Teilung in quadratischen Schritten, wie sie auch der A-160-1 kennt.

Teilung: 1/2, 1/8, 1/16, 1/32

Im nächsten Beispiel verwenden wir die Teilung nach fortlaufenden Zahlen. Das Ergebnis ist bereits etwas komplexer.

Teilung: 1/1 (ursprüngliches Clocksignal), 1/3, 1/4, 1/5.

Zuletzt verwenden wir die Teilung nach Primzahlen. Hier entstehen sehr komplexe Rhythmen, die vergleichsweise lange brauchen, bis sich mal etwas wiederholt.

Teilung: 1/1 (ursprüngliches Clocksignal), 1/3, 1/5, 1/7.
Teilung: 1/2, 1/5, 1/7, 1/11.

Konfiguration auf der Platine

Wie üblich bei den neueren Doepfer-Modulen, lässt sich auch beim A-160-2 noch einiges im Detail über Steckbrücken (Jumper) auf der Platine konfigurieren.

Hinweis: Die beiden Steckbrücken ganz links werden derzeit nicht verwendet, die beiden Steckbrücken ganz rechts müssen immer unbenutzt (ohne aufgesteckte Jumper) bleiben.

Die einsetzbaren Jumper von links nach rechts:

  • Reset Type: Bei gesetztem Jumper wird ein Reset nach Über- bzw- Unterschreiten einer bestimmten Spannung durchgeführt. Bei einem Dreieck oder Sinus als Reset-Signal erfolgt der Reset damit leicht verzögert. Ohne Jumper wird versucht, eine steigende (bzw. bei negativer Polarität des Reset-Signals fallende) Flanke zu erkennen und als Auslöser zu verwenden.
  • Reset Polarity: Bei gesetztem Jumper erfolgt der Reset bei Überschreiten einer Spannung oder steigendem Eingangssignal (abhägig vom Reset Type), ohne Jumper bei Unterschreiten einer Spannung oder fallendem Eingangssignal.
  • Output Polarity: Bei gesetztem Jumper werden die geteilten Clocksignale als „normale“, positive Trigger ausgegeben, ohne Jumper werden die Ausgegebenen Trigger invertiert (d.h. ein Trigger wird da ausgegeben, wo normalerweise eine „Pause“ war).
  • Clock Input Polarity: Das Modul reagiert bei gesetztem Jumper auf „normale“, positive Clocksignale, ohne Jumper wird das Clocksignal invertiert, d.h. es werden die „Pausen“ zwischen den Clocksignalen als Trigger verwendet.

Im Werkszustand sind alle 4 Jumper gesetzt, die alternativen Konfigurationen stehen in diesem Fall auch eher für „exotische“ Einsatzmöglichkeiten des Moduls.

Technische Daten

Breite4 TE
Tiefe35 mm
Strombedarf50 mA (+12V) / -0 mA (-12V)

A-171-2 Voltage Controlled Slew Processor/Generator

Der A-171-2 ist eines der ungewöhnlichsten Module im gesamten Doepfer-Sortiment (das neben vielen „Brot-und-Butter“-Modulen nun wirklich mehr als nur ein paar Raritäten zu bieten hat). Wo fangen wir an?

Zunächst: Was macht das Modul eigentlich? Ein Slew Processor also. Ja, schon mal gehört, das ist ziemlich praktisch. Sorgt für den Portamento-Effekt, den man braucht, wenn man zum Beispiel das „Lucky Man“-Solo spielen möchte, alles klar.

Ach so, das Ding hat auch Steuerspannungseingänge für das Portamento. Na gut, wer’s braucht, schadet ja nichts. Und einen Triggereingang haben wir auch. Hmm. Und einen „Cycle“-Schalter, na sowas. Ja wie, in den Eingang kann man auch Audio-Signale schicken, wer macht den sowas?

Also nochmal in Kurzform:

  • Das Modul kann Steuerspannungen glätten (wie bereits der A-171-1).
  • Das Modul kann auch ohne Eingangssignal Spannungen ausgeben, die von einem Trigger ausgelöst werden, wir haben also einen Hüllkurvengenerator.
  • Im Cycle-Modus können wir periodische Schwingungen erzeugen, deren Frequenz und Form über Steuerspannungen beeinflusst werden, wir haben also einen Oszillator, zumindest einen LFO.
  • Wenn wir an Stelle einer Steuerspannung ein Audiosignal in den Eingang schicken, haben wir ein Filter- bzw. LPG-Modul.
  • Am „End“-Ausgang wird ein Rechtecksignal ausgegeben, das beim Über- bzw. Unterschreiten eines Schwellwerts ausgelöst wird, wir haben also auch noch einen Comparator vor uns.
  • Das erzeugte Rechtecksignal wird mit Verzögerung aus dem Eingangs-Trigger erzeugt, also haben wir auch ein Trigger-Delay.
  • Bei geschickter Wahl der aufsteigenden und fallenden Slew Rates werden ganzzahlige Subharmonische aus einem periodischen Eingangs-Trigger (z.B. von einem VCO) erzeugt, also auch noch ein Subharmonic Generator.

Ganz schön viel für so ein unscheinbares 8-TE-Modul, oder?

Tatsächlich geht das Design des Moduls auf eine lizensierte Version des VCS von Ken Stone zurück, das wieder eine Version des ursprünglichen Serge Dual Universal Slope Generator ist.

Bedienelemente

Eingänge:

CTRL-A171-2-IN

Ausgänge:

CTRL-A171-2-OUT

Regler / Schalter:

CTRL-A171-2-SW

Klangbeispiele

Portamento:

Die „Brot-und-Butter“-Anwendung für einen Slew Processor ist die Abrundung von Sprüngen bei Steuerspannungen. Das klassische Beispiel dafür ist der „Portamento“-Effekt, bei dem die Steuerspannung für einen VCO langsam zwischen zwei Tonhöhen gleitet, anstatt abrupt zur nächsten Tonhöhe zu springen.

Dafür wird eine Steuerspannung (hier von einem Sequencer) an die „In“-Buchse des A-171-2 gelegt, der „Cycle“-Schalter ist aus. Die Charakteristik der Abrundung kann linear oder exponentiell sein, die Dauer der Abrundung der Steuerspannung erfolgt separat für aufsteigende und absteigende Schritte über die beiden Regler „“ (Up) und „“ (Down).

Die Steuerspannung für eine einfache Sequenz wird im A-171-2 bearbeitet. Wir hören zunächst die Glättung der aufsteigenden Spannungen, dann die der absteigenden Spannungen und schließlich den A-171-2 im „Cycle“-Modus. Beide Glättungen arbeiten exponentiell.

Audio-Bearbeitung:

Der A-171-2 kann auch ähnlich wie ein Filter eingesetzt werden, wobei man bei komplexerem Audiomaterial keine „übliche“ Filterung erwarten sollte. Das Audiosignal wird in die „In“-Buchse geleitet.

Das Audiosignal einer einfachen Sequenz wird in den Eingang des A-171-2 geleitet. Zuerst hören wir wieder die Glättung der aufsteigenden Spannungen (des Audiosignals), dann der absteigenden Spannungen und schließlich wird der „Cycle“-Modus des A-171-2 eingeschaltet.

Bei einfachen Audiosignalen, insbesondere bei einem Rechteck sind die Klangveränderungen schon deutlicher, da die Schwingungsform sehr deutlich von Rechteck über Sägezahn/Rechteck-Mischungen zu einem Dreieck-Signal verändert wird.

Das Rechteck-Signal eines einzelnen A-110-1 VCOs wird in den Eingang des A-171-2 geleitet. Zuerst wird der „Up „-Regler von 0 bis zur Hälfte erhöht, danach der „Down „-Regler bis zur Hälfte, „Up“ wird wieder bis 0 heruntergeregelt und schließlich „Down“. Beide Glättungen arbeiten linear.

Die folgenden Oszilloskop-Bilder zeigen die Veränderung des Rechtecksignals aus dem A-110-1. Bereits bei Nullstellung der Regler findet eine leichte Glättung zu einem Trapezoid statt.

„Up“ = 0, „Down“ = 0.
„Up“ = 5, „Down“ = 5.
„Up“ = 5, „Down“ = 0.
„Up“ = 0, „Down“ = 5.

Der A-171-2 als VCO:

Wenn man den Schalter „Cycle“ einschaltet (rechte Position), dann verhält sich der A-171-2 wie ein Oszillator. Er gibt dann ganz ohne Eingangssignal laufend eine periodisch steigende und fallende Spannung aus, ähnlich wie der A-143-1 Complex Envelope Generator im „LFO“-Modus. Im Gegensatz zum A-143-1, dessen Frequenz ausschließlich von der Länge der steigenden und fallenden Flanken abhängig ist, lässt sich die Frequenz des A-171-2 über eine Steuerspannung exponentiell beeinflussen.

Doepfer weist darauf hin, dass der „exp. CV“-Eingang keine 1V/Oktave-Charakteristik besitzt, was mit den steigenden und fallenden Flanken, die zudem wahlweise linear oder exponentiell (bzw. invers exponentiell) verlaufen können vermutlich auch kaum realisierbar wäre.

Der A-171-2 ist im „Cycle“-Modus, lediglich der „exp. CV“-Eingang ist mit dem Sequencer von vorhin verbunden. Man hört deutlich, dass hier keine 1V/Oktave-Steuerung vorliegt. Kein Eingangssignal.
Der A-171-2 ist im „Cycle“-Modus und erzeugt eine Dreieckschwingung. Die Shape-Regler („CV “ und „CV „, exponentieller Modus) der Slew Rates für aufsteigende und abfallende Spannung werden von ursprünglich „0“ auf die Maximal- bzw. Minimal-Werte (konkave bzw. konvexe Kurven) verändert. Kein Eingangssignal.

Die folgenden Oszilloskop-Bilder zeigen die Schwingungsformen des A-171-2, ausgehend vom Dreieck mit verschiedenen konvexen oder konkaven (bzw. logarithmischen / exponentiellen) Ausrichtungen der Glättung.

„Up Shape“ = 0, „Down Shape“ = 0.
„Up Shape“ = -5, „Down Shape“ = 5.
„Up Shape“ = 5, „Down Shape“ = 0.
„Up Shape“ = -5, „Down Shape“ = 0.
„Up Shape“ = 5, „Down Shape“ = 5.
„Up Shape“ = -5, „Down Shape“ = -5.
„Up Shape“ = 0, „Down Shape“ = 5.
„Up Shape“ = 0, „Down Shape“ = -5.

Subharmonic Generator:

Hier wird nicht ein Audiosignal direkt bearbeitet, sondern wir setzen das Rechteck-Signal eines Oszillators als Trigger im eingang „Trig“ ein, um den A-171-2 (der dann ein Dreicksignal erzeugt) immer wieder neu zu starten. Am Eingang „In“ liegt dabei kein Signal an. Im Gegensatz zu anderen Frequenzteilern wie dem A-113 entstehen beim Durchfahren des Reglers „“ (Up) allerdings deutliche Artefakte.

Ein A-110-1 wird von einem Sequencer gesteuert, das Rechtecksignal des VCOs dient zum Triggern des A-171-2, der somit als VCO arbeitet. Etwa ab der Mitte des Reglerweges des „Up“-Reglers entstehen Frequenzteilungen des ursprünglichen Signals.

Technische Daten

Breite8 TE
Tiefe60 mm
Strombedarf30 mA (+12V) / -30 mA (-12V)

A-183-4 Quad Level Shifter

Das Modul A-183-4 ist eines der Tools, die beim Einsatz von Modulen anderer Hersteller nützlich sein können: Während z.B. die Hüllkurvengeneratoren von Doepfer gut mit Trigger/Gate-Signalen von +5V zurecht kommen, benötigen manche andere Module +12V. Hier setzt der Level Shifter an und erzeugt aus Trigger/Gate-Signalen mit niedrigerer Spannung die erforderliche höhere Spannung.

Dabei wird das Eingangssignal nicht einfach verstärkt, sondern das neue Trigger/Gate-Signal wird durch einen Comparator erzeugt: Sobald das Eingangssignal einen Schwellwert von +3V überschreitet, wird eine konstante Ausgangsspannung ausgegeben, bis die Eingangsspannung wieder unter +0,8V sinkt.

Das hat zudem den Vorteil, dass die erzeugten Trigger/Gate-Signale sehr steile und präzise Flanken aufweisen. Besonders die neueren ADSR-Generatoren A-141-2 und A-141-4 scheinen etwas empfindlicher auf zu wenig steile Flanken von Gate-Signalen zu reagieren und lösen dann evtl. nicht korrekt aus. Hier kann ein zwischengeschalteter A-183-4 Abhilfe schaffen.

Bedienelemente

Eingänge:

CTRL-A183-4-IN

Ausgänge:

CTRL-A183-4-OUT

Alternativen

Wenn lediglich eine Anpassung bzw. Erhöhung der Spannung eines Signals erforderlich ist, kann auch der A-183-3 Amplifier eingesetzt werden, der allerdings keine Verbesserung/Schärfung von Trigger-Flanken vornimmt. Dafür ist er aber auch zur Anhebung von anderen Steuerspannungen wie LFOs, Audiosignalen usw. geeignet, während der A-183-4 immer nur eine ganz bestimmte Spannung bei Überschreitung des Schwellwerts ausgibt.

Ein deutlich komplexer und vielseitiger arbeitender Comparator ist der (leider nicht mehr lieferbare) A-167, der nicht nur mit einem einstellbaren Schwellwert, sondern auch mit zwei Eingangssignalen arbeiten kann.

Technische Daten

Breite2 TE
Tiefe40 mm
Strombedarf30 mA (+12V) / -0 mA (-12V)

A-165 Dual Trigger Inverter / Modifier / Level Shifter

Das Modul wird nicht mehr hergestellt.

Der A-165 Dual Trigger Inverter / Modifier ist ein praktisches kleines Modul, mit dem man Trigger und Gates invertieren kann.

Dabei werden in zwei identischen Teilmodulen »An« und »Aus« einfach vertauscht, das invertierte Signal ist keine negative Spannung, sondern wieder ein »normales« Gatesignal.

Zusätzlich kann aus der steigenden und aus der fallenden Flanke eines Gates je ein Trigger gewonnen werden. Das funktioniert auch mit Audiomaterial und erzeugt sehr interessante Ergebnisse!

Bedienelemente

Eingänge (für jedes Teilmodul):

CTRL-A165-IN

Ausgänge (für jedes Teilmodul):

CTRL-A165-OUT

Verdoppelung des Clocksignals

Einen Patch für einen »swingenden« Sequencer mit dem A-165 und einem A-146 LFO finden Sie beim A-146 Low Frequency Oscillator LFO 2. Bei steigenden und fallenden Flanken der Gatesignale aus dem Sequencer werden jeweils Trigger erzeugt.

Über eine A-155 Sequenz, die bereits die 8 Schritte voll ausnutzt (z.B. Bassdrum auf 1, 5 und 8, Snare auf 3 usw.) soll eine doppelt so schnelle Hihat (Sechzehntel) gelegt werden. Eine Verdoppelung der Sequencer­geschwindigkeit würde den Takt halbieren, also wird mit Hilfe eines A-165 das Clocksignal des Sequencers verdoppelt und für die Hihat verwendet.

Töne beim Loslassen einer Taste

Mit dem invertierten Gate kann man zwei unterschiedliche »Stimmen« des Modularsystems bei gedrückter und bei losgelassener Taste starten (die Stimme bei losgelassener Taste z.B. 2 Oktaven tiefer und klanglich etwas anders).

Der A-165 Trigger Modifier erzeugt ein invertiertes Gatesignal beim Loslassen einer Taste (oder einer vergleichbaren Quelle für Gatesignale). Das invertierte Gate wird zur Steuerung einer zweiten A-111-5 Mini Synthesizer Voice verwendet.

Technische Daten

Breite4 TE
Tiefe35 mm
Strombedarf20 mA (+12V) / -0 mA (-12V)

A-162 Dual Trigger Delay

Das A-162 Dual Trigger Delay kann Triggersignale verzögern und mit einstellbarer Dauer als Gatesignal wieder ausgeben.

Das Modul verfügt über zwei identische Teilmodule mit dieser Funktionalität.

Worin unterscheiden sich nun »Trigger« und »Gate«? Das ist eigentlich nur eine Frage, welche Teile eines Rechtecksignals verwendet werden: Die aufsteigende Flanke beim Trigger oder sowohl aufsteigende, als auch absteigende Flanke (und damit die Dauer des Signals) beim Gate.

Bedienelemente

Eingänge (für jedes Teilmodul):

CTRL-A162-IN

Ausgänge (für jedes Teilmodul):

CTRL-A162-OUT

Regler / Schalter (für jedes Teilmodul):

CTRL-A162-SW

Delay für Hüllkurven (DADSR)

Ein DADSR-Hüllkurvengenerator (ADSR mit Delay) kann mit einem A-162 Trigger Delay und einem A-140 ADSR erzeugt werden.

Manche Hüllkurvengeneratoren haben noch einen »Delay«-Parameter (z.B. die »Envelope 1« beim Korg MS-20), der die Hüllkurve verzögert einschwingen lässt. Das lässt sich mit dem A-162 gut realisieren.

Allerdings geht dabei die ursprüngliche Länge des Gates verloren und muss manuell am Trigger Delay eingestellt werden.

Rhythmische Variationen mit einem Sequencer

Komplexere Rhythmen aus dem Sequencer.

Für ungewöhnliche rhythmische Abläufe kann man einen langsam getakteten A-155 Sequencer mit beiden Trigger Delays verbinden und die produzierten Gatesignale mit einem A-186-1 OR-Combiner verbinden.

Wie immer ist beim Einsatz des A-186-1 zu berücksichtigen, dass einander überlappende Gatesignale als ein einziges Gate ausgegeben werden

Umwandeln von Triggern in Gates

Die sehr kurzen Triggersignale aus dem A-165 Trigger Modifier werden mit dem A-162 Trigger Delay in »brauchbare« Gatesignale umgewandelt.

Manchmal benötigt man aber auch ganz schlicht ein Hilfsmittel, um einen extrem kurzen Trigger (beispielsweise aus dem Ausgang »+/- Out« eines A-165 Trigger Modifiers) zu einem »normalen« Gate umzuwandeln, das auch in der Lage ist, die Attack-Phase eines ADSR-Generators zu halten.

Alternativen

Obwohl er eigentlich ein einfacher (Decay-)Hüllkurvengenerator ist, lassen sich auch mit dem A-142-1 Voltage Controlled Decay Gatesignale aus kurzen Triggerimpulsen erzeugen. Die Möglichkeit des Delays fehlt freilich, dafür kann die Länge des Gates über eine Steuerspannung geregelt werden.

Technische Daten

Breite8 TE
Tiefe45 mm
Strombedarf40 mA (+12V) / -0 mA (-12V)

A-142-1 Voltage Controlled Decay/Gate

Das A-142-1 Voltage Controlled Decay ist weit mehr als nur der »kleine Bruder« des A-141 VC ADSR.

Die erzeugte Hüllkurve, die nur aus einem Decay besteht, ist zwar »minimalistisch« – sie erfüllt aber in erstaunlich vielen Fällen genau das, was benötigt wird. Viele Bass- oder sonstige Sequencerlinien lassen sich damit bereits hervorragend gestalten.

Da es weder Attack, noch Sustain gibt, genügt ein einfaches Triggersignal zum Auslösen. Eine längere Haltedauer eines Tones mit konstantem Pegel wäre aufgrund der Beschränkung auf »Decay« ohnehin nicht darstellbar.

Dafür bietet das Modul eine Konvertierung von Triggersignalen in Gatesignale, die auch außerhalb des Einsatzgebiets »Hüllkurve« praktisch sein kann.

Bedienelemente

Eingänge:

CTRL-A142-1-IN

Ausgänge:

CTRL-A142-1-OUT

Regler / Schalter:

CTRL-A142-1-SW

Steuerung durch einen Sequencer

Ein A-155 Sequencer steuert sowohl Auslösung als auch Länge der A-142 Decay-Hüllkurven.

Das Modul kann gut eingesetzt werden, wenn die Länge der (sehr einfach gestalteten) Hüllkurven über Tastatur oder Sequencer gesteuert werden soll.

So lassen sich z.B. mit einem Sequencer durch diese längeren Töne gezielt Akzente setzen: Eine Spur des Sequencers wird dafür mit dem Steuerspannungseingang des VCD verbunden.

LFO-Modus

Ein A-142 im »LFO-Modus«.

Der Ausgang »Inv. Gate Out« kann auch sehr gut dafür verwendet werden, das VCD in einen »LFO-Modus« zu bringen:

Dazu wird der invertierte Ausgang mit dem »Trig. In« Eingang verbunden und passende Einstellungen für Decay und Threshold gewählt. Die Hüllkurve wird sich immer wieder selbst auslösen.

Spannungsgesteuertes Trigger-Delay

Ein schönes Beispiel für einen etwas ungewöhnlicheren Einsatz stammt wieder von Doepfer selbst (aus der PDF-Anleitung zum Modul): Mit zwei A-142-1 VCDs kann ein spannungsgesteuertes Trigger-Delay gebaut werden.

Das erste VCD dient zur Verzögerung eines Triggersignals: Im Modul werden Decay und Threshold so eingestellt, dass die Länge des erzeugten Gatesignals der Verzögerung entspricht.

Zwei A-142 bilden ein spannungsgesteuertes Trigger-Delay.

Wenn man nun das invertierte Gatesignal aus diesem VCD verwendet, erhält man ein Gate- / Triggersignal mit der passenden Verzögerung. Aber: Für einen Einsatz als Gate dauert das Signal noch viel zu lange.

Um die Anpassung der Länge des Gatesignals kümmert sich das zweite VCD:

Das invertierte Gate wird in seinen »Trig. In« Eingang gespeist. Nun kann mit den Reglern »Decay« und »Threshold« im zweiten VCD ein Gatesignal in der gewünschten Länge eingestellt werden.

Mit diesem Gatesignal wird dann ein A-140 ADSR oder Ähnliches angesteuert.

Technische Daten

Breite8 TE
Tiefe40 mm
Strombedarf40 mA (+12V) / -20 mA (-12V)

A-186-1 Gate/Trigger Combiner/Rectifier

Das Modul wird nicht mehr hergestellt.

Der A-186-1 Gate / Trigger Combiner ist ein recht einfaches Modul, das sogar ohne Stromversorgung betrieben werden kann. Einzige Funktion: Gate- oder Triggersignale an den 7 Eingängen werden zu einem gemeinsamen Gate / Trigger kombiniert.

Damit arbeitet es für Trigger/Gates wie die OR-Schaltung eines A-166 Dual Logic Modules, nur mit 7 an Stelle von 3 Eingängen.

Bedienelemente

Eingänge:

CTRL-A186-1-IN

Ausgänge:

CTRL-A186-1-OUT

Kombination von Triggern / Gates

Der A-186-1 Gate / Trigger Combiner verbindet Triggersignale auf eine einzige Ausgangsbuchse. Zuvor werden die Längen der Eingangssignale mit dem A-162 Trigger Delay soweit gekürzt, dass sie sich nicht überlappen.

Mit dem Modul können bis zu 7 unterschiedliche Gate- / Trigger-Quellen für einen Empfänger kombiniert werden. Z.B. eine Tastatur, ein Sequencer, ein Zufalls-Trigger usw., die alle einen Hüllkurvengenerator ansteuern sollen.

Dabei ist zu beachten, dass Gates, die sich überlappen, als ein einziges – entsprechend verlängertes – Gatesignal ausgegeben werden. Wenn das unerwünscht ist, können ggf. einzelne Gates mit einem A-162 Dual Trigger Delay auf eine feste – gekürzte – Länge gebracht werden.

Noch ein Waveshaper?

Von Sinusschwingungen aus zwei A-110-1 VCOs werden im A-186-1 die Maxima ausgewählt (und ansonsten alle negativen Halbwellen gekappt), so dass man eine Schwingungsform erhält, die auch von einem Waveshaper stammen könnte.

Da das Modul wie ein Maximum Selector arbeitet, besteht eine gewisse »Verwandtschaft« zum A-172 Maximum / Minimum Selector. Damit kann es als einfacher Waveshaper eingesetzt werden, der bis zu 7 Eingangssignale verarbeiten kann. Technisch bedingt werden keine negativen Spannungen durch das Modul gelassen – diese werden an der Nulllinie hart »abgeschnitten« (im Oszilloskopbild ist die Schwingungsform durch eine konstante negative Spannung nach unten verschoben).

Technische Daten

Breite4 TE
Tiefe20 mm
Strombedarf0 mA (+12V) / -0 mA (-12V)

A-113 Subharmonic Generator

Der Subharmonic Oscillator ist ein sehr ungewöhnliches Modul, das ursprünglich aus dem Trautonium-Projekt von Doepfer stammt. Doepfer hatte die erforderlichen Komponenten eines Trautoniums (einem historischen Vorläufer des heutigen Analog-Synthesizers von Friedrich Trautwein, 1888-1956) innerhalb des A-100 Systems realisiert.

Im Gegensatz zu den meisten anderen Frequenzteilern, die Rechtecksignale ausgeben, erzeugt der A-113 Sägezahnsignale, deren Frequenz sich einen ganzzahligen Teiler unterhalb eines »Master«-Oszillators befindet. Dabei handelt es sich übrigens keineswegs um »mathematisch exakte« Sägezahnsignale, sondern um etwas krumme Schwingungsformen, die mit anderen Oszillatoren nur schwer erzielbar sind.

Das Modul hat 4 solche Frequenzteiler eingebaut, die erzeugten Signale lassen sich entweder individuell abgreifen oder zu einem Summensignal mischen. Die Zusammenstellung der vier Teilerverhältnisse für die Frequenzteiler (z.B. 1/3, 1/5, 1/7 und 1/11) wird dabei als »Mixtur« bezeichnet.

Vier unterschiedliche »Mixturen« (z.B. 1/2, 1/3, 1/8 und 1/16 als erste Mixtur, 1/2, 1/3, 1/4, 1/5 als zweite Mixtur, 1/2, 1/4, 1/8 und 1/16 als dritte Mixtur und viel mal 1/2 als vierte Mixtur) lassen sich als ein Preset speichern und über Gatesignale abrufen. Im Original-Trautonium wurden diese Gate­signale mit Fußtastern erzeugt, im Modularsystem kann man die Phantasie noch etwas weiter schweifen lassen. Es lassen sich insgesamt 50 solcher Presets speichern.

Hinter dem Einsatz von »Subharmonischen« steht die Überlegung, die harmonische Obertonreihe (wie sie z.B. bei Blasinstrumenten natürlich vorkommt) nach unten zu ergänzen. Während die Obertonreihe aus der doppelten, dreifachen, 4-fachen, 5-fachen usw. Frequenz des Grundtons besteht, wird bei den Subharmonischen 1/2, 1/3, 1/4, 1/5 usw. der Frequenz des Grundtons angesetzt. Interessanterweise lassen sich aus der ersten Obertonreihe die Töne des Dur-Akkordes ableiten, aus den theoretisch dazu erfundenen Subharmonischen die Töne des Moll-Akkordes (mit dem Ausgangston in der Quinte).

Bedienelemente

Eingänge:

CTRL-A113-IN

Ausgänge:

CTRL-A113-OUT

Regler / Schalter:

CTRL-A113-SW1

CTRL-A113-SW2

Trautonium – minimalistisch gedacht

Es muss ja nicht gleich ein komplettes Trautonium sein – aber den Subharmonic Generator kann man einfach in einem »Mini-Trautonium« gemeinsam mit einem VCO und einem Formantfilter einsetzen:

Grundausstattung für einfache Trautonium-Klänge, noch durch Modulationsquellen (LFO, ADSR) und einen VCA zu ergänzen. Mit einem Doppel-Fußtaster, der an das »Foot Ctr« Modul angeschlossen wird, kann man zwischen vier vorbereiteten Mixturen des A-113 umschalten.

Ein etwas anderer Sägezahn

Der A-113 Subharmonic Generator erzeugt keine »reinen« Sägezahnsignale, sondern Schwingungen mit gerundeten Flanken. Zudem erzeugt der Subharmonic Generator aus unterschiedlich breiten Pulsschwingungen auch unterschiedliche »Sägezahn-artige« (das Eingangssignal ist jeweils unten dargestellt):

Schmaler Puls als Eingangssignal, das Ergebnis ist halbwegs nahe am Rechteck.
Mittlerer Puls als Eingangssignal ergibt eine »Haifischflosse«.
Breiter Puls: Nahe an einem »normalem« Sägezahn.

Teiler für Triggersignale

Das Modul ist hervorragend für die Erzeugung komplexer Triggermuster geeignet und kann auch die niedrigen Frequenzen von Clocksignalen noch gut verarbeiten. Die erzeugten Sägezahnsignale »funktionieren« gut als Triggersignale. Man kann dann die Triggermuster während einer Performance »livetauglich« verändern, es gibt Speichermöglichkeiten, verschiedene Muster lassen sich per Fußtaster / Gatesignale abrufen, und nicht zuletzt sind die vier Displays eine ausgezeichnete Orientierungshilfe bei »polyrhythmischen Entgleisungen«.

Zusätzliche 5V Stromversorgung

Die erste Version des Moduls (erkennbar am 16-poligen Buskabel) benötigt neben den üblichen +12 V noch eine Stromversorgung von 50 mA an +5 V. Ab dem neuen Netzteil PSU3 wird diese Versorgungsspannung standardmäßig über den Bus bereitgestellt. Ältere Netzteile erfordern z.B. den 5V Low Cost Adapter, der auf einen freien Steckplatz auf dem gleichen Bus wie das Modul aufgesteckt wird und der dann die +5V zur Verfügung stellt.

Der ab Frühjahr 2015 produzierte A-113 benötigt keine zusätzliche 5V Stromversorgung.

Achtung: Den 5V-Adapter keinesfalls bei einem neuen PSU3-Netzteil einsetzen! (Gefahr der Beschädigung von Netzteil bzw. Adapter.)

Technische Daten

Breite26 TE
Tiefe90 mm
Strombedarf30 mA (+12V) / -10 mA (-12V) – alte Version
120 mA (+12V) / -10 mA (-12V) – neue Version
Zusätzlicher Strombedarf100 mA (+5 V) – nur die alte Version, bei der neuen nicht mehr erforderlich

A-166 Dual Logic Module

Das A-166 Dual Logic Module stellt mit zwei identischen Teilmodulen bzw. zusätzlich zwei identischen Invertern grundlegende logische Verknüpfungen zur Verfügung.

Die A-166 Inverter sind keine Spannungs-Inverter (wie etwa der A-175 oder Polarisierer), sondern logische Inverter, die »Gate an« in »Gate aus« umwandeln und umgekehrt. Bei einem Spannungsinverter müsste man hier noch jeweils eine konstante Offsetspannung in Höhe eines Gatesignals hinzufügen, um das gleiche Ergebnis zu erhalten.

Die Logik-Module besitzen je drei Eingänge, die aber nicht alle verwendet werden müssen, da die Eingänge intern vorverkabelt sind (Schaltbuchsen).

Bedienelemente

Eingänge (für jedes Logik- bzw. Inverter- Teilmodul):

CTRL-A166-IN

Ausgänge (für jedes Logik- bzw. Inverter- Teilmodul):

CTRL-A166-OUT

Auswirkungen der Schaltbuchsen

Es ist jeweils die 2. mit der 1. bzw. die 3. mit der 2. Buchse intern vorverkabelt. Die Verbindung wird nur über Einstecken eines Steckers unterbrochen.

Wenn man nur die erste Buchse verwendet, verhalten sich die beiden anderen Buchsen wie die erste. Wenn man der Kürze halber für »Gate an« 1 und für »Gate aus« 0 schreibt, gibt es dabei für die Buchsen folgende Zustände: 0,0,0 und 1,1,1.

Bei Verwendung der ersten und zweiten Buchse verhalten sich 2. und 3. Buchse immer gleich, wir haben folgende mögliche Zustände: 1,1,1, 1,0,0, 0,1,1 und 0,0,0. Wichtig dabei ist, dass sich die logischen Ausgänge bei diesen Kombinationen ganz genau so verhalten, als gäbe es nur die ersten beiden Eingänge (d.h. es finden die richtigen logischen Verknüpfungen statt).

Was sind logische Verknüpfungen?

  • AND: Damit das Ergebnis 1 (oder auch „wahr“) wird, müssen sämtliche Eingänge ebenfalls 1 sein. Also nur dann, wenn bei allen Eingängen eine Gatespannung anliegt, wird hier ein Gate ausgegeben.
  • OR: Sobald einer oder mehrere der Eingänge 1 sind, wird auch das Ergebnis 1. Nur wenn alle Eingänge 0 sind, bleibt auch das Ergebnis 0. Sobald an wenigstens einem Eingang eine Gatespannung anliegt, wird auch eine solche wieder ausgegeben.
  • XOR: Das „exklusive oder“ wird dann 1, wenn es unterschiedliche Werte bei den Eingängen gibt, d.h. wenn es sowohl Eingänge mit 0 als auch mit 1 gibt, in allen anderen Fällen bleibt das Ergebnis 0.

Logik-Tabelle bei zwei Eingängen

Eingang 1Eingang 2ANDORXOR
00000
01011
10011
11110

Die logisch invertierten Funktionen NAND, NOR, NEXOR erhält man durch Verbindung des jeweiligen Logik-Ausganges mit einem der Inverter-Eingänge. Hier wird aus jeder »1« eine »0« und umgekehrt.

Logik-Tabelle bei drei Eingängen

Eingang 1Eingang 2Eingang 3ANDORXOR
000000
001011
010011
011011
100011
101011
110011
111110

Wie man sieht, unterscheiden sich viele der Eingangs-Zustände gar nicht bei den Ausgängen, es gibt auch hier eigentlich nur 3 Varianten: nirgendwo ein Gate – alle Ausgänge auf 0. Gates teilweise an, teilweise nicht – AND ist aus, OR und XOR sind an. Alle Gates positiv – AND ist an, OR ist an, XOR ist aus.

Anwendungsbeispiele

OR: Gate / Trigger Combiner

Das Modul kann mit der OR-Funktion bis zu drei Gates / Trigger kombinieren. Wenn wenigstens ein Gate positiv ist, liegt auch am Ausgang ein Gatesignal an.

Für bis zu 7 Gates / Trigger kann diese Aufgabe übrigens auch das Modul A-186-1 übernehmen.

AND: Gated Sequencer

Mit Hilfe der AND-Verknüpfung bestimmt das manuelle Gate aus dem A-198 Ribbon Controller, ob die Trigger / Gates aus dem Sequencer weitergegeben werden.

Manchmal soll eine vorbereitete Sequenz nur unter bestimmten Bedingungen ablaufen, z.B. für eine zusätzliche Stimme, die 2 Oktaven tiefer liegt, aber nicht immer mitlaufen soll. Dafür kann man die Gatesignale aus dem A-155 mit einer AND-Funktion z.B. mit einem Ribbon Controller verbinden. Eine Ausgabe der Sequencer-Gates erfolgt dann nur, wenn auch gleichzeitig das manuelle Gatesignal anliegt.

XOR: Gesteuerter Gate-Invertierer

Mit Hilfe der XOR-Funktion kann man die Gates (z.B. aus einem A-155 Sequencer) »ferngesteuert« invertieren: dazu kann man z.B. den 9 / 16-Ausgang aus dem A-154 Sequencer Controller einsetzen: bei jedem zweiten 8-stufigen Durchlauf werden nun »zwischen den Noten« die invertierten Gates ausgegeben.

Technische Daten

Breite8 TE
Tiefe50 mm
Strombedarf40 mA (+12V) / -20 mA (-12V)