A-110-6 Trapezoid Quadrature Thru Zero VCO

Im Vergleich zum A-110-4 Quadrature Thru Zero VCO setzt der A-110-6 noch eines obendrauf: Wir haben es hier nicht mit einem Sinus-Kern, sondern mit einem Trapezoid-Kern zu tun. Das ist ein einzigartiges Design mit dem man zunächst eine Trapezoid-Schwingungsform, sowie ein um 90 Grad phasenverschobenes Trapezoid erzeugt (sozusagen die Pendants zu Sinus und Cosinus beim A-110-4). Zusätzlich lassen sich aus dem Trapezoid aber noch die herkömmlichen Schwingungsformen Dreieck, Sinus, Rechteck und Sägezahn ableiten – ebenfalls jeweils mit einer um 90 Grad phasenverschobenen „Cosinus“-Variante. Thru-Zero Modulationen sind wie beim A-110-4 möglich. Der A-110-6 ist derzeit der aufwändigste Einzel-VCO von Doepfer.

Der Einsatzbereich ähnelt naturgemäß dem des A-110-4, erlaubt aber gerade bei FM durch die zusätzlichen Schwingungsformen ein reicheres Spektrum an Klängen. Zudem ist der A-110-6 deutlich weniger empfindlich auf DC-Offsets des Modulators bei der linearen Frequenzmodulation.

Das Modul ist – wie etwa auch der A-110-1 oder A-110-2 – mit einem Heizelement für die temperaturempfindlichen Bauteile ausgestattet, bleibt also auch bei Änderungen der Umgebungstemperatur stimmstabil.

Bedienelemente

Eingänge:

CTRL-A110-6-IN

Ausgänge:

CTRL-A110-6-OUT

Regler / Schalter:

CTRL-A110-6-SW

Konfiguration auf der Platine

JP3 auf der Platine. Das Flachbandkabel wurde hier abgezogen.

Neben vielen Trimmpotentiometern bietet die Platine die Möglichkeit, wahlweise auf eine Steuerspannung im A-100-Bus zuzugreifen oder diese Verbindung zu unterbrechen. Steuerspannungen vom Bus werden immer mit Steuerspannungen am Eingang „1V/Oct“ addiert, z.B. um den Oszillator über den Bus zu transponieren, während er über die 1V/Oct-Buchse von einem Sequencer gesteuert wird.

Der Jumper 3 verbindet das Modul mit dem Bus (gesteckt) oder trennt die Verbindung auf (Jumper entfernt). Der Jumper selbst liegt etwas versteckt hinter einem Flachbandkabel, das die beiden Platinen miteinander verbindet.

Wie sehen die Schwingungsformen aus?

Ein Quadratur-Oszillator mit nicht weniger als 5 Schwingungsformen ist schon ein technisch recht komplexes Gebilde. Auf den Oszilloskop-Bildern sehen wir jeweils unten den normalen Ausgang und darüber den um 90° phasenverschobenen „Cosinus“-Ausgang.

Dreieck aus dem A-110-6.
Sinus aus dem A-110-6. Leicht eckig, aber kann mit den A-110-1 / A-111-1 VCOs noch gut mithalten.
Rechteck aus dem A-110-6. Die leicht steigenden und fallenden „Querbalken“ auf den Schwingungen haben alle analogen VCOs.
Sägezahn aus dem A-110-6.
Trapezoid aus dem A-110-6.

Lineare Frequenzmodulation

Mit seinen sehr speziellen Möglichkeiten ist der A-110-6 sicher kein „Brot und Butter“-VCO. Für einen solchen würde man sich auch Features wie einen Oktavwahlschalter oder Pulsbreitenmodulation wünschen.

Interessant wird das Modul allerdings bei der linearen Frequenzmodulation, die hier auch im den negativen Bereich möglich ist, so dass die ursprüngliche Schwingungsform invertiert wird. Ein super-exakter DX7 ist das freilich noch nicht, aber gerade das „organische“ Verhalten des A-110-6 bietet zusammen mit der ungewöhnlichen Palette an Grundwellenformen viel Spielraum für Klangexperimente.

Klangbeispiele

In den folgenden Klangbeispielen wird der A-110-6 von einem A-110-4 moduliert (LFM-Eingang). Der A-110-6 wird von einer einfachen A-155-Sequenz gesteuert, das Trapezoid-Ausgangssignal geht in einen A-132-3 VCA (linear), der über eine A-140-Hüllkurve kontrolliert wird.

Wir starten mit dem reinen Trapezoid-Signal ohne FM. Die Modulationsintensität wird langsam eingeblendet, die Frequenz des A-110-4 wird dabei manuell verändert. Schließlich bekommt auch der A-110-4 mit einem zweiten A-110-4 eine lineare Frequenzmodulation, auch hier verstelle ich die Frequenzen der beiden A-110-4 VCOs manuell.

Lineare Frequenzmodulation mit einem und schließlich kaskadiert einem zweiten A-110-4.

Durch die im Vergleich zum A-110-6 fixe Frequenz der Modulations-VCOs ändert sich der Klang bei jedem Schritt der Sequenz. In einem nächsten Schritt verwende ich das gleiche Setup, schließe jetzt aber zusätzlich die beiden A-110-4 an den Sequencer an (1V/Oct-Eingang). Um verschiedene Klangfarben zu erzeugen verstelle ich im Laufe des Beispiels wieder manuell die Stimmung der beiden A-110-4 VCOs. Ein lohnendes Feld wären hier noch definierte Intervalle zwischen den Oszillatoren, in den Beispielen habe ich nur „blind herumgeschraubt“, ohne z.B. mit einem Tuner die Stimmung genau einzustellen.

Lineare Frequenzmodulation mit zwei kaskadierten A-110-4, die ebenfalls vom Sequencer gesteuert werden.

Schließlich leite ich den Ausgang des A-110-4, der den A-110-6 direkt moduliert durch ein A-101-2 Lowpass Gate, das über eine einfache AR-Hüllkurve aus einem A-143-1 gesteuert wird. Damit bekommt die Frequenzmodulation eine eigene Hüllkurve, die ich – wie auch wieder die Stimmung der A-110-4 VCOs – ebenfalls im Verlauf des Beispiels manuell verändere. Das Lowpass Gate ist zunächst im „LP+VCA“-Modus, gegen Ende (ab ca. 2:30) schalte ich bei hoher Resonanz des Filters auf den reinen Filter um, um die Selbstresonanz als weitere Modulationsquelle für den A-110-6 zu nutzen.

Lineare FM mit zwei kaskadierten A-110-4, ebenfalls vom Sequencer gesteuert und über ein Lowpass Gate in der Amplitude / Klangfarbe beeinflusst.

Zum Schluss noch eine Reihe von Klangbeispielen mit gleichem Setup wie zuvor (Sequencer steuert alle VCOs, die A-110-4 gehen über ein LPG), aber mit viel dezenterer Einstellung der Frequenzmodluation beim A-110-6, um die Auswirkung auf die verschiedenen Schwingungsformen des A-110-6 zu zeigen:

Dreieck aus dem A-110-6.
Sinus aus dem A-110-6.
Rechteck aus dem A-110-6.
Sägezahn aus dem A-110-6.
Trapezoid aus dem A-110-6.

Im nächsten Klangbeispiel werden die beiden um 90 Grad phasenverschobenen Sägezahn-Ausgänge des A-110-6 in einem A-133-2 VC Polarizer durch die Sinus- und Cosinus-Ausgänge eines A-110-4 moduliert. Im Prinzip ist das eine Amplitudenmodulation, die aber bei negativer Steuerspannung die Phase wechselt (Ringmodulator-Prinzip). Wir hören die beiden Ausgänge des Polarizers auf die Stereokanäle verteilt. Die Stimmung der beiden VCOs wird wieder per Hand geregelt.

A-110-6 im VC Polarizer, moduliert von einem A-110-4.

Im letzten Beispiel setzen wir wieder einen A-110-6 und einen A-110-4 mit ihren jeweils um 90 Grad phasenverschobenen Sinus-Ausgängen ein, diesmal als die vier Eingangssignale eines A-172 Max/Min Selectors. Die beiden Ausgänge für Max und Min sind auf die beiden Stereokanäle verteilt. Meine A-110-4 stammen noch aus einer früheren Baureihe mit deutlich geringerem Ausgangslevel als der A-110-6, was hier zu interessanten Nebeneffekten führt. Die Stimmung der beiden VCOs wird wieder per Hand geregelt.

A-110-6 im Max/min, gemeinsam mit einem A-110-4.

Technische Daten

Breite12 TE
Tiefe55 mm
Strombedarf80 mA (+12V) / -70 mA (-12V)

A-110-4 Quadrature Thru Zero VCO

Zunächst einmal: Wow, was für ein pompöser Name! „Quadrature Thru Zero VCO“! Das klingt doch mindestens nach Warp 11, Quantenfluxkompensatoren und ähnlichen Dingen, oder? Die Bezeichnung wird eigentlich nur noch vom A-110-6 „Trapezoid Thru Zero Quadrature VCO“ getoppt – zu dem kommen wir in einem späteren Blogbeitrag in diesem Hyperraumkontinuum zu sprechen.

Das Wort „Quadrature“ kennen wir von einem anderen Modul, dem A-143-9 VC Quadrature LFO: Hier hatte Doepfer erstmals einen Oszillator angeboten, der eine Sinusschwingung „quadratisch“, d.h. um jeweils 90° in der Phase verschoben erzeugt. Und so wird auch beim A-110-4 ein Sinus und ein Cosinus (um 90° gegen den Sinus verschoben) ausgegeben. Und „Thru Zero“? Das bedeutet schlichtweg, dass der Oszillator bis zu echten 0 Herz moduliert werden kann – hier bleibt die Schwingung einfach auf einer konstanten Spannung stehen – und sogar noch darunter zu „negativen Frequenzen“. Letztere sind allerdings schon wieder recht trivial, es handelt sich einfach um invertierte Schwingungen, die nach dem Nulldurchgang wieder an Frequenz zunehmen.

Wozu braucht man so etwas? Den A-143-9 VC Quadrature LFO z.B. wird man oft für komplexere Modulationen einsetzen, bei denen mehrere Modulationsziele (z.B. VCAs oder VCFs) unterschiedlich, aber in steter gegenseitiger Abhängigkeit moduliert werden sollen. Im Prinzip lässt sich das natürlich auch mit einem A-110-4 durchführen, allerdings kann der deutlich weiter in den Audiobereich vordringen. Der A-143-9 ist dagegen eher ein „gepimpter“ LFO. Zudem ist in den A-110-4 eine Temperaturkompensation eingebaut, die Stimmung wird also auch bei schwankenden Außentempersturen gehalten. FM von mehreren Oszillatoren liegt somit näher – zusätzlich interessant durch die Modulation über den Nullpunkt hinweg.

Bedienelemente

Eingänge:

CTRL-A110-4-IN

Ausgänge:

CTRL-A110-4-OUT

Regler / Schalter:

CTRL-A110-4-SW

Tonhöhenschwankungen durch FM?

Die lineare Frequenzmodulation kann sehr komplexe Klänge erzeugen, die wir spätestens seit den Yamaha DX-Synthesizern der Achtzigerjahre bestens kennen. Fast alle FM-Synthesizer arbeiten allerdings mit einer digitalen Klangerzeugung, analoge FM gilt als eine eher schwierige Kunst. Warum?

Eines der Hauptprobleme sind sogenannte DC-Offsets bei den modulierenden VCOs: Viele analoge VCOs oszillieren nicht exakt um 0 Volt, sondern weisen eine leichte Verschiebung auf, die manchmal sogar abhängig von der Frequenz variiert. Für ein Audiosignal ist so etwas kein wirkliches Problem, wir hören schlicht nichts von diesen Offset-Spannungen. Ganz anders, wenn man so etwas als Modulationssignal einsetzt: Die leichte zusätzliche Gleichspannung (und nichts anderes ist so ein Offset) verschiebt die Tonhöhe des modulierten VCO ein Stückchen nach oben oder unten. Und wenn wir die Intensität der Modulation erhöhen, dann verschiebt sich die Grund-Frequenz des modulierten VCOs noch weiter. So etwas ist ganz besonders auffällig, wenn die Modulation dynamisch ist, wenn wir also in klassischer FM-Manier die Stärke der Modulation über einen VCA mit einer Hüllkurve steuern – die Grund-Tonhöhe wird dann der Hüllkurve folgen, ein Effekt, den wir in der Regel so nicht beabsichtigt haben…

Im Netz gibt es einige Berichte, dass ausgerechnet unser A-110-4 besonders empfindlich für solche DC-Offsets zu sein scheint. Was tun? Es gibt mehrere Lösungsansätze:

  • Wahl eines Modulators (d.h. eines VCOs, der den A-110-4 moduliert),  der ein möglichst geringes DC-Offset aufweist. Hier hilft nur ausprobieren…
  • Zwischenschalten eines Hochpassfilters. Ein A-123 oder ein A-123-2 kann den unerwünschten Effekt mildern.
  • Zwischenschalten eines Kondensators: Das ist eine Lösung für die Löt-Fraktion, aber auch sie stößt bei dynamischer Modulation an ihre Grenzen – ein DC-Offset, das über VCA und Hüllkurve moduliert wird, ist nämlich keine echte Gleichspannung mehr, die ein Kondensator eliminieren könnte.
  • Kompensation des DC-Offsets mit einer zugemischten Gleichspannung – auch hier scheitern wir bei dynamischer Modulation.
  • Wir akzeptieren das Problem so wie es ist und setzen den A-110-4 bei dynamischer FM eher für Effekt-Klänge, Perkussives und anderem ein, das nicht einer exakten Tonhöhe folgen muss.

Letztlich sind das alles eher Kompromisse. Für tonal zu spielende dynamische FM ist der – allerdings auch teurere – A-110-6 die deutlich bessere Wahl.

Frequenzschieber

Ein leider nicht mehr produziertes Modul von Doepfer ist der A-126 VC Frequency Shifter: Ein komplexes Gerät, mit dem die Teiltöne einer Schwingungsform um einen bestimmten Betrag nach oben und/oder nach unten verschoben werden können. Da diese Verschiebung sämtliche Teiltöne um die gleiche Frequenz verändert, geht das ursprüngliche harmonisches Gefüge verloren und es entstehen glockenartige Klänge, wie man sie von Ringmodulatoren her kennt.

Tatsächlich lässt sich ein Frequenzschieber mit Hilfe eines Quadratur-Oszillators und zwei Ringmodulatoren (z.B. aus einem A-114 Dual Ring Modulator oder – feiner justierbar – aus einem A-133 oder A-133-2 Dual VC Polarizer) nachbilden. Die Sinus- und die Cosinus-Schwingung aus dem A-110-4 dienen als eines der Eingangssignale (beim A-114, bzw. als Modulationssignal beim A-133), in die beiden freien Eingänge des A-114 oder A-133 wird dann noch (per Multiples aufgeteilt) das zu modulierende Audiosignal geleitet.

Die typischen Frequenzschieber-Signale sind ein „Shifted Up“- und ein „Shifted Down“-Signal, das wir aus einer einfachen 1:1-Mischung (Up) der beiden ringmodulierten Signale, sowie aus einer Mischung aus einem Original-Signal mit einem invertierten Signal erhalten. Unser Nachbau erfordert etwas mehr Platz als das Original, aber kommt durchweg mit „Brot-und-Butter“-Modulen (A-114, A-175 usw.) aus, die auch in kleineren Modularsystemen vorhanden sein sollten. Im Gegensatz zum ursprünglichen A-126, der nur einen recht einfachen Quadratur-Oszillator „an Bord“ hatte, können wir mit dem A-110-4 auch extrem niedrige Modulationsfrequenzen einsetzen und faszinierende Schwebungen erzeugen, die mit dem Original so nicht ohne Weiteres möglich sind.

FM – Frequenzmodulation

Unter „FM“ wird meist eine Frequenzmodulation von Oszillatoren verstanden (im Gegensatz zu einer „Filter-FM“ etwa), die mit Modulationsfrequenzen im Audiobereich arbeitet. Das Prinzip ist aus den digitalen FM-Synthesizern von Yamaha bekannt, obwohl es sich bei dieser FM technisch eher um eine Phasenmodulation handelt.

Bereits mit einem weiteren VCO (z.B. einem A-110-1) als Modulator können FM-Sounds erstellt werden, die durch das „Thru Zero“-Feature und die dadurch entstehende laufende Phasenumkehr (im Audiobereich!) sehr ungewöhnlich klingen. Als Modulator-Schwingungsform sollte man übrigens ruhig auch mal andere Schwingungsformen als nur Sinus verwenden, speziell Pulswellen führen zu recht reizvollen Ergebnissen.

Des Pudels Kern

Der A-110-4 ist einer der wenigen Oszillatoren (neben dem A-143-9), die einen echten Sinus-Kern besitzen. Das bedeutet, dass die Sinus-Schwingungsform hier nicht aus einer anderen Schwingungsform (meist Dreieck wie beim A-111-1, A-111-2 und A-111-3 oder Sägezahn wie beim A-110-1 und A-110-2) abgeleitet werden muss, sondern grundsätzlich bereits als Sinus erzteugt wird. Dem entsprechend ist der Sinus der A-110-4 – VCOs sehr sauber und ohne „Ecken und Kanten“, die ggf. zusätzliche – beim Sinus ungewollte – Obertöne als Seiteneffekt erzeugen.

Temperaturkompensation

Der A-110-4 verfügt über eine kleine Schaltung zur Temperaturkompensation, die ihn unabhängig von Veränderungen der Außentemperatur stimmstabil bleiben lässt.

Sonderedition

Der A-110-4 ist auch in einer Sonderedition mit blauer Frontplatte und weißen Drehreglern erhältlich.

Technische Daten

Breite8 TE
Tiefe60 mm
Strombedarf90 mA (+12V) / -30 mA (-12V)