A-141-4 Quad Poly VCADSR

Der A-141-4 ist ein nur 8 TE breiter vierfach-ADSR, der primär für polyphone Anwendungen gedacht ist. Daher gibt es auch nur einen Satz an Reglern für die Parameter der Hüllkurve – Attack, Decay, Sustain und Release, die alle vier Hüllkurven gleichermaßen bestimmen.

Zusätzlich finden wir vier Steuerspannungseingänge mit bipolaren Abschwächern für Attack, Decay, Sustain und Release – auch hier wieder für alle vier Hüllkurven gemeinsam.

Die Gate-Eingänge liegen natürlich separat für die vier Hüllkurven vor…

Bedienelemente

Eingänge:

CTRL-A141-4-IN

Ausgänge:

CTRL-A141-4-OUT

Regler / Schalter:

CTRL-A141-4-SW

Polyphone Spannungssteuerung

Für den polyphonen Einsatz ist es tatsächlich ungeheuer praktisch, alle vier Hüllkurven mit nur einem Satz Reglern einstellen zu können. Gerade beim Einsatz zur Steuerung der Filter hört man auch kleine Unterschiede in den Verläufen recht schnell.

Auch die Spannungssteuerung ist eine sinnvolle Option, für den polyphonen Betrieb müssen die vier ADSR-Generatoren ja ohnehin intern über Steuerspannungen geregelt werden. Aber gerade hier gäbe es noch zusätzliches Potenzial: Für ein ausdrucksstarkes Spiel auf einem Polysynth ist die Anschlagsdynamik (pro Note!) einer der wichtigsten Parameter. Neben Lautstärke und Filter kann man die Anschlagsstärke gerade auch für spannungsgesteuerte Hüllkurven einsetzen. Leichter Anschlag führt dann z.B. zu langsamen Attack- und Decay-Zeiten, harter Anschlag zu sehr kurzen Attack- und Decay-Zeiten (und dafür vielleicht zu längerem Release. Dafür müsste es aber für jeden der vier ADSR-Generatoren einen individuellen Steuerspannungs-Eingang geben, verbunden mit Reglern, wie diese Steuerspannung Attack, Decay und Release aller vier Hüllkurven beeinflusst.

Beim A-140-2 ist so etwas Ähnliches eingebaut, allerdings nur mit einem Abschwächer für alle drei Zeiten gemeinsam. Aber vielleicht gibt es ja mal ein kleines Zusatzmodul für den A-141-4, das die vier Steuereingänge (einen pro ADSR) und vier Abschwächer (einen pro Parameter, den aber gemeinsam für alle ADSR-Generatoren) enthält.

Klangbeispiel – der „Doepfer-Patch“

In einem der ersten Videos zu den neuen polyphonen Modulen hat Dieter Döpfer einen sehr interessanten Patch vorgestellt, in dem die Tonhöhen der VCOs von einem Keyboard gesteuert wurden, die Gates für die Hüllkurven aber durch den A-157 Trigger Sequencer erzeugt wurden.

Mein Setup ist dem nachempfunden, allerdings habe ich an Stelle des polyphonen A-111-4 VCO und des polyphonen A-105-4 VCF konventionelle A-110-1 und A-111-1 VCOs zusammen mit einem A-120 Ladder Filter, einem A-101-1 Steiner Filter, einem A-106-5 SEM Filter und einem A-124 Wasp Filter verwendet – mit unterschiedlich vielen VCOs und unterschiedlichen Schwingungsformen als Eingangssignale.

Zusätzlich triggern die verbleibenden vier Spuren des A-157 einen A-142-4 Quad Decay, der wieder die vier Längen- bzw. Level-Parameter des A-141-4 moduliert. Ansonsten dudle ich halt auf dem Keyboard, um die Tonhöhen zu verändern und verändere manuell die Decay-Zeiten des A-142-4 bzw. die ADSR-Parameter des A-141-4.

Die vier Stimmen sind im Stereo-Panorama verteilt, etwas VTape Delay und Valhalla Reverb obendrauf.

Polyphones – mit dem A-157 Trigger Sequencer gesteuert.

Technische Daten

Breite8 TE
Tiefe45 mm
Strombedarf70 mA (+12V) / -60 mA (-12V)

A-190-5 Polyphonic USB/Midi-to-CV/Gate Interface

Das A-190-5 ist ein Midi-to-CV/Gate-Interface, das in erster Linie für polyphone Anwendungen gedacht ist. Damit können über ein beliebiges Midi-Keyboard bis zu vier modulare Synthesizerstimmen gesteuert werden.

Polyphonie ist im Modularbereich immer noch eine eher exotische „Randerscheinung“. Aufwand, Kosten und Komplexität der Steuerung erscheinen vergleichsweise hoch, wenn man daneben moderne analoge oder virtuell-analoge Polysynths stellt. Trotzdem bewegt sich hier gerade einiges, was ich persönlich für höchst spannend halte.

Das Interface hat Midi-In und Midi-Thru, kann wahlweise auch über USB angesprochen werden und erlaubt die Steuerung von bis zu vier analogen Synthesizerstimmen mit Gate, CV für die Tonhöhe und für Velocity, sowie einem konfigurierbaren dritten CV-Ausgang für Modulationssignale.

Bedienelemente

Eingänge:

CTRL-A190-5-IN

Ausgänge:

CTRL-A190-5-OUT

Regler / Schalter:

CTRL-A190-5-SW

Die Sache mit dem USB-Port

Doepfer weist auf seiner Website darauf hin, dass die Verwendung des USB-Ports, z.B. als Interface zu einer DAW, Probleme mit sich bringen kann. Der Grund liegt darin, dass alle Midi-Signale, die über den DIN-Midi-Eingang oder über den USB-Port an das Modul gesendet werden, auch via Midi Thru über diesen USB-Port wieder ausgegeben werden.

Jede Note, die man also von der DAW an das Modul sendet, schickt es umgehend wieder zurück. Wenn nun die DAW-Spur, die das A-190-5 Interface ansteuert, auch noch alle an der DAW anliegenden Midi-Eingänge akzeptiert, dann kommt es zu einer Schleife und entsprechendem „Midi-Datensalat“.

Die Lösung des Problems ist allerdings ganz einfach: Man muss nur bei der DAW-Spur für das A-190-5 darauf achten, dass sie nicht Midi-Signale von eben diesem Modul akzeptiert. „All Midi Inputs“ z.B. ist also keine gute Idee für diese Spur. Manche DAWs bieten auch die Möglichkeit, bestimmte Midi/USB-Inputs ganz zu blocken, auch das ist eine Option.

Verbindungsmöglichkeiten über die Platine

Im Gegensatz zu vielen anderen Doepfer-Modulen neueren Datums sind auf den Platinen keine Konfigurations-Optionen untergebracht. Dafür aber zwei Pin-Leisten für die ausgegebenen Gate-Signale und „CV Note“ – Steuerspannungen. Darauf passen kleine Kabel (beim Elektronikhandel nach „Steckpins“ suchen), über die man das Interface mit dem polyphonen VCO A-111-4 bzw. dem polyphonen ADSR A-141-4 (ab Version 2, bei der ersten Version muss man noch löten) verbinden kann.

Die Steckverbindungen JP8 und JP9 für Gate und Note CV. Die anderen Jumper beinhalten keine User-Optionen.

Betriebsarten im Überblick

Mit Hilfe der „+“ und „-“ Taster kann zwischen den sechs Betriebsarten des Interfaces umgeschaltet werden. Die Unterschiede liegen in der Anzahl der Midi-Kanäle, auf die das Modul reagiert und darin, wie viele gleichzeitige Noten pro Midi-Kanal in die Modularwelt umgesetzt werden.

Betriebsart:Midi-
Kanäle:
Noten
pro
Kanal:
Verhalten der analogen Ausgänge:
Unisono
1+2+3+4
11Monophon auf allen vier Ausgängen gleichzeitig, alle Ausgänge spielen (unisono) die gleichen Noten.
In Summe also eine Modular-Stimme (vierfach ausgegeben).
Mono/Uni
1+2;3+4
21Ausgänge 1+2 spielen (unisono) die Noten des ersten Midi-Kanals, Ausgänge 3+4 (unisono) die Noten des zweiten Midi-Kanals.
In Summe zwei Modular-Stimmen (jeweils doppelt ausgegeben).
Mono
1;2;3;4
41Vierfach monophon, je ein Ausgang spielt monophon die Noten des jeweils eingestellten ersten bis vierten Midi-Kanals.
In Summme vier Modular-Stimmen.
Poly
1-2-3-4-1..
14Vierstimmige Polyphonie, den vier Ausgängen werden rotierend die gespielten Noten zugeordnet.
In Summme vier Modular-Stimmen.
Poly
1+2-3+4-1..
12Zweistimmige Polyphonie, den Ausgängen 1+2 (unisono) und 3+4 (unisono) werden rotierend die gespielten Noten zugeordnet.
In Summe zwei Modular-Stimmen (jeweils doppelt ausgegeben).
Poly
1-2-1;3-4-3
22Zweistimmige Polyphonie mit zwei Midi-Kanälen, den Ausgängen 1 und 2 werden rotierend die Noten des ersten Midi-Kanals zugeordnet, den Ausgängen 3 und 4 rotierend die Noten des zweiten Midi-Kanals.
In Summe vier Modular-Stimmen.

Programmierung der Optionen

Wenn man in einer der sechs Betriebsarten die „Enter“-Taste drückt, gelangt man in die Editier-Menüs des Interfaces. Zwischen den Optionen kann man mit den „+“ und „-“ Tastern wechseln, die Werte für die einzelnen Optionen stellt man durch Drücken auf „Enter“ und dann den „+“ / „-“ Tastern ein.

Option:Einstellmöglichkeiten:
RetriggerZeit von 0 bis 50 Millisekunden. Bei 0 ms wird beim Legato-Spiel kein erneuter Trigger/Gate auf dem entsprechenden Analog-Ausgang ausgegeben.
MidichannelDer Midi-Kanal, dessen Noten das Modul in analoge Gates und Steuerspannungen umwandelt (Kanal 1 bis 16). Bei den Betriebsarten für mehrere Midi-Kanäle werden die Kanäle nacheinander eingestellt und jeweils durch „Enter“ abgeschlossen, dann folgt die nächste Kanalauswahl.
RefnoteDie Midi-Referenznote, für die das Interface 0 V als Steuerspannung am Ausgang CV1 ausgibt. Das ist die tiefste Midi-Note, auf die das Modul reagiert. Bei den Betriebsarten für mehrere Midi-Kanäle werden die Referenznoten für jeden Midi-Kanal nacheinander eingestellt und jeweils durch „Enter“ abgeschlossen, dann folgt die Referenznote für den nächsten Midi-Kanal.
Der Wertebereich dieser tiefsten Midi-Note ist Midi-Note #24 bis #96, das entspricht C0 bis C6.
CV3Die Midi-Controller, die auf den vier Ausgängen „CV3“ ausgegeben werden. Hier hat man bei Doepfer sehr clever mitgedacht und für jeden der vier „CV3“-Ausgänge einen separaten Midi-Controller ermöglicht: Controller wie monophones Aftertouch, Modulationsrad oder Sustain-Pedal werden ja nicht pro Note erzeugt, sondern pro Midi-Kanal. Gerade im vierfachen Poly-Modus kann man damit vier unterschiedliche Controller für ein ausdrucksstarkes Spiel mit dem A-100 nutzen. Die Controller werden für jeden der vier „CV3“-Ausgänge nacheinander eingestellt und die Programmierung jeweils durch „Enter“ abgeschlossen, dann folgt der Midi-Controller für den nächsten „CV3“-Ausgang.

Retrigger in der Praxis:

Was bedeutet die Einstellung einer Retrigger-Zeit in der Praxis? Grundsätzlich wird das Interface bei jeder neuen Note ein Gatesignal am „Gate“-Ausgang ausgeben. Da Gate-Signale immer so lange ausgegeben werden, wie die Taste gedrückt bleibt, überlappen sich beim Legato-Spiel in den „Mono“- bzw. „Unisono“-Betriebsarten die erzeugten Gate-Signale des entsprechenden Analog-Ausgangs und die Hüllkurve wird nicht neu gestartet.

Um einen Neustart der Hüllkurve zu erzwingen, kann man nun eine Zeit von 1-50 ms einstellen, in der das Gate-Signal unterbrochen wird, sobald die neue Taste gedrückt wird. Hier muss man etwas probieren: Zu kurze Pausen werden die Hüllkurve evtl. nicht neu starten, zu lange Pausen wird man bei perkussiven Hüllkurven möglicherweise als leichte Verzögerung hören.

Wenn die Retrigger-Zeit auf 0 ms eingestellt ist, wird beim Legato-Spiel das Gate-Signal nicht unterbrochen und die Hüllkurve in diesem Fall nicht neu gestartet. Das ist eigentlich auch das Standard-Verhalten klassischer (monophoner) Analogsynthesizer.

Bei den Poly-Betriebsarten konnte ich keine Auswirkungen der Retrigger-Zeiten feststellen – hier übernimmt ja auch jeweils die nächste analoge Stimme mit einem eigenen Gate-Signal. Beim „Überlauf“ der Stimmen gibt nach der vierten analogen Stime wieder der erste „CV Note“-Ausgang eine neue Steuerspannung aus, der erste „Gate“-Ausgang unterbricht allerdings sein Gate-Signal nicht, um es neu zu starten.

Refnote in der Praxis:

Für die meisten Keyboards genügt C0 (Midi-Note #24) als tiefste mögliche Note, bei einem 88-Tasten-Keyboard wie meinem LMK2 z.B. reicht die Tastatur allerdings noch etwas weiter hinunter bis zum A-1 (das ist dann die Midi-Note #21). Damit die untersten drei Tasten nicht ungenutzt bleiben, kann man das Keyboard gegebenenfalls 1 Oktave nach oben transponieren, um den vollen Umfang auszunutzen. Vom Interface her sind übrigens dem Tonumfang mit bis zu 10 Volt Steuerspannung (= 10 Oktaven bei 1V/Oktave!) nach oben kaum Grenzen gesetzt.

Steuerspannungen bis 10 Volt:

Das A-190-5 Interface liefert durchaus potente 10 V an maximaler Steuerspannung. Das ist für einige der „normalen“ (nicht-polyphonen) Module schon eine ganze Menge, ein A-140 liefert z.B. nur bis zu 5 V ab. Kaputt machen kann man damit natürlich nichts, aber man sollte die Abschwächer von Filtern usw., die vom A-190-5 gesteuert werden, im Vergleich etwas weiter herunter regeln, um sinnvolle Steuerungsbereiche zu erhalten. Die polyphonen Module A-141-4 VC ADSR und A-132-8 Octal Poly VCA sind übrigens ebenfalls auf +10 V Steuerspannungen ausgerichtet.

Einschränkungen und mögliche Weiterentwicklungen:

Das Interface hat derzeit (Juni 2021) noch den allerersten Softwarestand. Normalerweise verfeinert Doepfer seine digital gesteuerten Module noch weiter, so dass wir hier auf künftige Features hoffen können.

Viele monophone Midi-to-CV-Interfaces bieten kleine „Helfer-Funktionen“ wie digital erzeugte LFOs, Portamento (pro Ausgang individuell einstellbar) oder die Umsetzung des Midi-Pitchwheels in die Steuerspannung für die VCOs. Das wäre auch beim polyphonen Einsatz sehr praktisch.

Auch bei der Umsetzung der einzelnen Noten in die CV-Ausgänge gäbe es noch sinnvolle Optionen: Ein echter „Round Robin“, der tatsächlich bei jeder neuen Midi-Note auf den nächsten CV/Gate-Ausgang wechselt, würde jede (auch nur kurz angespielte) Note ausklingen lassen, während die nächste Note gespielt wird. Oder eine reine Zufalls-Zuordnung der analogen Ausgänge pro Midi-Note, z.B. wenn man vier verschiedene Filter oder unterschiedliche Schwingungsformen der VCOs einsetzt. Derzeit wird bei überlappenden Noten der nächste freie Analog-Ausgang verwendet, eine einstimmige – nicht legato gespielte – Melodie landet somit aktuell stets auf dem ersten analogen Ausgang.

Was ich tatsächlich sehr vermisst habe, ist die Implementierung des Midi-Pitchbend-Rades im Interface (oder ich war einfach zu doof, es zu finden). Im Gegensatz zu Modulationsrad und monophonem Aftertouch ist das Pitchbend-Rad kein „Midi-Controller“ mit Werten zwischen 0 und 127, sondern setzt sich aus zwei Bytes (d.h. 14 Bit in der Midi-Welt) zusammen, die insgesamt 16.383 möglichen Werten entsprechen. Eine Implementierung würde idealerweise direkt die „CV Note“ Ausgänge beeinflussen oder über einen der „CV3“-Ausgänge ausgegeben werden. Bis die Option im A-190-5 verfügbar ist, kann man ein zusätzliches A-190-3 Interface und dessen dediziert dafür vorhandenen „CV Pitch“ Ausgang verwenden.

Warten wir’s ab, Doepfer ist ziemlich kreativ (und produktiv!), aber im Kern halt auch eine relativ kleine Firma mit begrenzten Ressourcen, die sich um eine sehr große Anzahl von Modulen kümern muss.

Ein Wort (oder zwei) zu den polyphonen A-100 Modulen

Polyphone Module sind eine Herausforderung. Wo sonst ein einacher Potentiometer – also ein manuell einstellbarer Widerstand – die Regelung einer Steuerspannung übernimmt, muss man das bei polyphonen Modulen z.B. über mehrere integrierte VCAs erledigen, die dann wieder über eine Spannung und besagten Potentiometer gesteuert werden. Das kostet Geld durch die zusätzlichen Bauteile und es bringt Aufwand bei der Abstimung des Moduls mit sich, die (vier) Teilmodule sollen ja möglichst ähnlich reagieren.

Doepfer bietet – als einziger mir bekannter Hersteller – eine ganze Reihe von Modulen an, die für einen polyphonen Einsatz tauglich sind: einen vierfach-VCO A-111-4, ein vierfach-Filter A-105-4, einen vierfach-ADSR A-141-4 (der natürlich grundsätzlich spannungsgesteuert arbeitet), einen vierfach-, nein achtfach-VCA A-132-8. Damit lässt sich schon einiges anstellen, während der Platzbedarf überschaubar bleibt: Filter, ADSR und VCA sind jeweils nur 8 TE breite „Slim Line“ Module. Vierfach-LFOs gibt es ohnehin schon länger. Und modular-mäßig bewegen wir uns natürlich auch deutlich jenseits der „Standard-Polyphonen“, schließlich hat man ja ein Modularsystem.

Was ich mir für künftige Entwicklungen noch wünschen würde, wäre auf jeden Fall ein 8-in-4-Mischer oder besser 16-in-4-Mischer – mit gemeinsamer Steuerung für die 4 Ausgangskanäle, um mehr als einen VCO pro Stimme einzusetzen. Und vielleicht noch ein paar kleine Hilfsmodule, wie einen vierfachen Waveshaper, einen vierfachen Slew-Limiter mit Aufholverstärker (oder gleich eine polyphone Portamento-Option im A-190-5) oder einen einfach gestrickten vierfachen Suboszillator.

Und ja, man könnte sich sehr viele weitere polyphone Filter wünschen. Tatsächlich finde ich persönlich aber gerade die Filter die am wenigsten problematischen Module für polyphone Anwendungen. Die Doepfer-Filter sind fast alle recht preiswert und eine Abstimmung mehrerer Filter ist schnell erledigt. Dann noch einen freien CV-Eingang für die gemeinsame Steuerung der Eckfrequenz und alles ist gut. Falls es doch noch ein polyphones Filter-Modul sein soll, wäre ich persönlich für ein leicht abgespecktes Xpander-Filter mit möglichst vielen der 12 db und – besser noch – 6 dB – Filtermodi.

Grundausstattung für Polyphonie

Die Basis für ein polyphon einsetzbares Modularsystem ist tatsächlich das Midi-Interface A-190-5. Alles andere (A-111-4, A-195-4, A-141-4, A-132-8) ist ungemein praktisch und erleichtert spürbar die Bedienung beim Spielen des Systems, kann aber notfalls durch eine Reihe von Einzelmodulen ersetzt werden, die man dann halt „per Hand“ aneinander angleichen muss.

Ein minimalistisches polyphones System könnte auch aus einem A-190-5 und vier A-111-6 Miniature Synthesizer Voices bestehen. Warum auch nicht? Beim Oberheim Four Voice musste man auch jede Stimme manuell einstellen.

Klangbeispiele

Für ein erstes Test-Setup habe ich auf bereits vorhandene Module in meinem Rack zurück gegriffen: Basis waren meine A-110-1 VCOs (flankiert von einem fast identisch klingenden A-110-2), beim Filter war die Wahl schnell getroffen, als „BBD-Ergänzung“ befinden sich sechs A-108 in meinem Rack (für die BBDs besonders geeignet aufgrund der 48dB-Flankensteilheit), andere Filter hatte ich schlicht nicht in ausreichender Anzahl „gesammelt“.

Als VCA hatte ich zunächst den A-132-4 Quad Exponential VCA angedacht, der war allerdings mangels CV-Abschwächer bei den 10 V Ausgangsspannung des A-141-4 ADSRs nicht verzerrungsfrei einsetzbar. Stattdessen vier A-140 wären schon machbar, aber deutlich umständlicher als der polyphone ADSR-Generator. Also den linearen A-135-2 VC Mixer mit dem A-141-4 kombiniert und alles ist gut.

Die „Gate“-Ausgänge des A-190-5 triggern die vier Hüllkurven des A-141-4. Diese Hüllkurven steuern zugleich den A-135-2 VC Mixer und die vier A-108-Filter (mit Hilfe der überaus praktischen „Stackables“ gepatcht).

Die „CV Note“-Ausgänge des A-190-5 gehen jeweils in einen A-185-2 Precision CV Adder (von denen man übrigens NIEMALS genug haben kann), jeder A-185-2 ist mit zwei A-110-1 VCOs verbunden (bei einer Stimme mit einem A-110-1 und einem A-110-2). Der erste VCO pro Stimme ist ein in der Pulsbreite moduliertes Rechteck (Modulation durch vier LFOs im A-143-3), der zweite VCO ein Sägezahn eine Oktave darüber. Wie mischt man die VCOs? Noch gibt es leider keinen „polyphonen Mixer“, also habe ich einen A-138e Quad Crossfader dafür verwendet. Dessen vier Ausgänge gehen in die vier A-108 Filter.

Der „CV2“-Ausgang (= Anschlagdynamik der gespielten Midi-Noten) des A-190-5 steuert – zusätzlich zu den Hüllkurven – die Eckfrequenz der A-108-Filter über deren dritten CV-Eingang. Gerne hätte ich auch noch die Lautstärke mit der Anschlagsdynamik beeinflusst, aber das muss dann warten, bis ich einen A-132-8 Octal Polyphonic VCA habe.

Als „Sonderwunsch“ hatte ich noch ein polyphones Portamento im Sinn. Das Interface unterstützt das derzeit leider noch nicht, es gibt auch keinen vierfach-Slew-Limiter. Doch halt: den gibt/gab es schon: Der A-129 / 3 gemeinsam mit dem A-129 / 4 aus dem leider mittlerweile eingestellten Vocoder-Subsystem.

Das Modulationsrad meines LMK2 wird auf einen der „CV3“-Ausgänge gelegt und steuert gleichzeitig Frequenz und Amplitude (über einen A-132-4 VCA) eines A-143-4 Quad VCO/VCLFOs. Das Sostenuto-Pedal (das linke Pedal) am LMK2 wird ebenfalls auf einen der „CV3“-Ausgänge gelegt und reduziert das Portamento über den A-129 / 4. Schließlich landet auch der monophone Aftertouch auf „CV3“ und wird von dort auf die vier noch freien Steuerspannungseingänge der A-108 Filter gepatcht.

In Summe also doch das eine oder andere Modul verbaut, aber es macht tatsächlich ungeheuer Spaß, das A-100-System polyphon zu spielen.

Im ersten Klangbeispiel verwende ich den „Poly“-Modus, langsame Attack- und Release-Zeiten und die „6dB“-Ausgänge der Ladder-Filter. Hier, wie auch im zweiten Klangbeispiel werden die vier Stimmen im Stereobild verteilt und mit einem VirSyn VTape-Delay und einem Valhalla-Reverb in der DAW versehen.

Polyphone Spielereien.

Das zweite Klangbeispiel verwendet den „Unisono“-Modus, die Hüllkurve ist auf sehr kurze Attack- und Release-Zeiten eingestellt, ich verwende die 24dB-Ausgänge der Ladder-Filter mit deutlich höherer Resonanz. Auch hier sind die Einzelstimmen im Stereobild verteilt und mit VTape und Valhalla „gewürzt“.

Monophone „Spielereien“.

Technische Daten

Breite16 TE
Tiefe55 mm
Strombedarf120 mA (+12V) / -40 mA (-12V)

A-144 Morphing Controller

Das Modul wird nicht mehr hergestellt.

Der A-144 Morphing Controller erzeugt Steuerspannungen, mit denen z.B. vier lineare VCAs eines spanungsgesteuerten Mixers so geregelt werden, dass die vier Eingangssignale des Mixers der Reihe nach überblendet werden. Geeignet sind dafür der A-135-1 bzw. A-135-2 Voltage Controlled Mixer und der A-135-4 Voltage Controlled Performance Mixer, aber auch Mehrfach-VCAs mit Summenausgang wie der A-130-8 oder der A-132-8 (hier nur die linearen VCAs).

Dabei produziert der A-144 bei stetig steigender Eingangsspannung nacheinander vier einander überlappende Dreieck-Signale – sobald das erste Dreieck wieder fällt, setzt das zweite Dreieck mit steigender Flanke ein, die Summe der Ausgangsspannungen aus dem A-144 ist immer konstant – außer am Anfang und am Ende der Eingangs-Steuerspannung. Da wird das erste Signal (gesteuert durch „Out 1“) einfach eingeblendet bzw. das vierte Signal (gesteuert durch „Out 4“) ausgeblendet. Zusamen mit den linearen VCAs der Mixer ergibt das eine „nahtlose“ Überblendung der Mixer-Eingangssignale.

Auf der Frontplatte des Moduls ist übrigens sehr schön der Zusammenhang zwischen Eingangsspannung und den vier Ausgangsspannungen aufgedruckt.

Wir werden weiter unten sehen, dass „Morphing“ nicht die einzige interessante Einsatzmmöglichkeit des A-144 Morphing Controllers ist.

Bedienelemente

Eingänge:

CTRL-A144-IN

Ausgänge:

CTRL-A144-OUT

Regler / Schalter:

CTRL-A144-SW

Morphen

Das Prinzip des Morphing Controllers ist einfach: Abhängig vom Regler »Man. Morph« oder einer Steuerspannung erzeugen die vier Ausgänge ansteigende und dann fallende Steuerspannungen. Zuerst steigt die Spannung an »Out 1« an, um dann wieder auf 0 V zurückzufallen. Während der fallenden Flanke steigt die Spannung an »Out 2« an – sie erreicht ihr Maximum, wenn »Out 1« bei 0 V angekommen ist.

Analog geht es mit den restlichen Ausgängen weiter, bis am Ende wieder alle vier Ausgänge auf 0 V stehen. Damit lassen sich vier lineare VCAs steuern, so dass sie in Summe gemischt zuerst das erste Eingangssignal einblenden, dann zum zweiten Audiosignal überblenden, zum dritten und schließlich vierten, das am Ende wieder ausgeblendet wird. Der A-135-1 VC Mixer verfügt über 4 solche VCAs, einen Mischer, Abschwächer usw. was die Angelegenheit sehr komfortabel – aber mit 18 TE leider im Rack wenig »platzsparend« macht. Etwas „gedrängter“ sind die Bedienelemente beim neuen A-135-2 angebracht, bei dem man auf die vier Eingangs-Abschwächer verzichten muss, der dafür aber auch nur 8 TE Platz benötigt.

„Material“ zum Morphen können natürlich vier grundsätzlich unterschiedliche Audioquellen sein, z.B. vier verschiedene Synthesizerstimmen, aber auch die Ausgänge eines VCOs zur Überblendung der Schwingungsformen, Ausgänge von Multimode-Filtern wie der A-106-6 oder auch Filter mit mehreren Ausgängen für die Flankensteilheit wie der A-108 6/12/24/48dB Lowpass oder der A-123-2 6/12/18/24dB Highpass für spannungsgesteuerte Flankensteilheit.

Klangbeispiel – Morphing

Der A-144 wird von einem AD-Generator (Loop-Modus) eines A-143-1 Complex Envelope Generator gesteuert. Die Ausgänge des A-144 kontrollieren die Lautstärken eines A-135-2 VC Mixers, in den die Audio-Signale eines A-117 Digital Noise, A-110-6 Trapezoid Quadrature Thru Zero VCOs, A-118 Noise Generators („Colored“ Out) und eines A-143-9 VC Quadrature LFOs geleitet werden. Der A-110-6 und der A-143-9 werden von einem weiteren A-143-9 in der Frequenz moduliert.

Morphing von vier unterschiedlichen Klangquellen mit Hilfe eines A-143-1 Complex Envelope Generators.

Klangbeispiel – Morphen von Filterausgängen

Drei A-111-1 Oszillatoren (Sägezahn, ein VCO ist eine Oktave nach unten transponiert) werden von einem A-155 Sequencer gesteuert, der Trigger-Ausgang des Sequencers taktet zugleich einen A-148 Sample & Hold (mit Rauschen als Eingangssignal), der den A-144 kontrolliert. Die vier Eingangssignale des A-135-2 VC Mixers sind die vier Filter-Ausgänge eines A-121-2 Multimode-Filters. Damit wird pro Sequencer-Step ein Filterausgang bzw. die Mischung eines Filterausgangs mit einem weiteren per Zufall ausgewählt.

Steuerung durch einen Sequencer

Das Morphing muss ja nicht unbedingt nur ein weicher Übergang »A-B-C-D« sein, sondern kann auch sprunghaft angesteuert werden. Hier kann z.B. ein A-155 Sequencer die Steuer­spannung liefern.

Ein A-155 Sequencer steuert über den A-144 Morph Controller das Mischungsverhältnis der vier Audiosignale.

Klangbeispiel – Sequenziertes Morphing

Der A-144 wird diesmal von einem A-155 Sequencer gesteuert. Die Ausgänge des A-144 kontrollieren die Lautstärken eines A-135-2 VC Mixers, in den die Audio-Signale eines A-117 Digital Noise, A-110-6 Trapezoid Quadrature Thru Zero VCOs, A-118 Noise Generators („Colored“ Out) und eines A-143-9 VC Quadrature LFOs geleitet werden. Der A-110-6 und der A-143-9 werden von einem weiteren A-143-9 in der Frequenz moduliert.

Morphing mit Hilfe eines A-155 Sequencers.

Panning / Quadrophonie

An Stelle von vier Eingangssignalen ist beim Einsatz von vier linearen VCAs auch ein Panning für ein Quadrophonie-Setup denkbar: ein Audiosignal wird über einen Verteiler an alle 4 VCAs gesendet, die vier Lautsprecher versorgen. Nachteil dabei: Es sind nur immer je 2 Lautsprecher gleichzeitig ansteuerbar (das Signal ist nie »in der Mitte«), es gibt zudem keine Mischung zwischen dem letzten und dem ersten Lautsprecher. Da ist dann ein Setup z.B. mit dem, A-134-2 Dual VC Crossfader sinnvoller.

Vier VCAs (A-132-3) mit vier separaten Audioausgängen werden durch den A-144 Morphing Controller gesteuert. Alle VCAs verstärken dasselbe Eingangssignal (hier über A-182-1 Switched Multiples verteilt).

Der Morph Controller als »Obertongenerator«

Wenn man die Dreieck-, Sinus- oder Sägezahnschwingung eines VCOs als Steuer­spannung einsetzt, erhält man einen interessanten »Obertongenerator«, der Dreieckschwingungen (bzw. Varianten davon) erzeugt.

Der A-144 als ungewöhnlicher »Waveshaper«. An Stelle des A-138b kann natürlich auch ein A-138c Polarizing Mixer eingesetzt werden, der dann über die invertierten Schwingungsformen noch zusätzliche Variationsmöglichkeiten bietet.

Wenn man einen A-111-1 VCO mit seiner steigenden Sägezahnschwingung als Steuersignal des A-144 verwendet, erhält man aus der Mischung der vier Ausgangssignale eine überraschend komplexe Schwingungsform:

Entgegen der Erwartung bekommmen wir nicht einfach „vier Dreieckschwingungen“, sondern ein einigermaßen komplexes Gebilde.

Alternativen

Derzeit gibt es für das leider nicht mehr lieferbare Modul keinen wirklichen Ersatz. Laut Doepfer ist aber ein erweitertes Nachfolgemodul „A-144-4“ bereits in Planung. Ich werde berichten und vergleichen, sobald es erhältlich ist!

Technische Daten

Breite8 TE
Tiefe40 mm
Strombedarf30 mA (+12V) / -30 mA (-12V)

A-143-4 Quad VCLFO/VCO

Der Quad VCLFO ist tatsächlich schon fast ein „echter“ VCO: Er verfügt sogar über eine Temperaturkompensation, die ihn auch bei äußeren Temperaturschwankungen stimmstabil bleiben lässt. Doepfer weist darauf hin, dass der A-143-4 freilich nicht ganz so exakt wie die VCOs der A-110- oder A-111-Reihe ist, aber aus meiner Sicht kann er für manche Fälle durchaus ein interessanter Ersatz für einen – nein tatsächlich vier! – herkömmliche VCOs sein.

Ein paar Einschränkungen sind aber doch zu beachten: Die Oszillatoren (mit Dreieck-Kern) erzeugen lediglich Dreieck und Rechteck – keinen Sägezahn, kein Sinus und keinen variabel breiten Puls. Zudem gibt es nur einen Regler für die Frequenz, der wahlweise (mittels Jumper auf der Platine) über ca. 1 oder über ca. 5 Oktaven reichen kann – da bieten die „echten“ VCO etwas mehr Komfort.

Bedienelemente

Eingänge:

CTRL-A143-4-IN1

CTRL-A143-4-IN2

Ausgänge:

CTRL-A143-4-OUT

Regler / Schalter:

CTRL-A143-4-SW

Sync-Optionen – Reset und Direction

Das Modul hat vergleichsweise komplexe Sync-Optionen, bei denen der Reset auf 0 Volt teilweise separat von einer darauf folgenden Richtungsänderung der erzeugten Schwingung behandelt wird. Bei den Oszillatoren A bis C gibt es nur jeweils einen gemeinsamen Eingang für Reset und Richtungsänderung, aber beim Oszillator D kann man die Richtungsänderung über den „Direction“-Eingang unabhängig vom Reset durchführen. Wenn dieser Eingang nicht belegt ist, wird intern vorverdrahtet das Signal aus dem „Reset“-Eingang verwendet (Schaltbuchse).

Für alle Sync-Eingänge wird normalerweise ein Rechteck als Sync-Signal verwendet. Dabei erfolgt der Reset auf 0 Volt immer bei der steigenden Flanke dieses Sync-Signals, die Richtungsänderung aber sowohl bei steigender, als auch fallender Flanke des Sync-Signals.

Zusätzlich erlaubt der Oszillator D über einen Kippschalter drei verschiedene Varianten der Richtungsänderung:

  • up: Die Richtung der Schwingungsform steigt nach den steigenden/fallenden Flanken des Sync-Signals immer an. War das Dreieck gerade im Fallen, ändert es danach also seine Richtung, war es am Ansteigen, bleibt die Richtung des Dreiecks erhalten.
  • down: Die Richtung der Schwingungsform fällt immer nach den steigenden/fallenden Flanken des Sync-Signals. War das Dreieck gerade im Fallen, bleibt das auch so, war es am Ansteigen, ändert es seine Richtung.
  • both: Die Richtung der Schwingungsform wird nach den steigenden/fallenden Flanken des Sync-Signals immer geändert.

In Kombination mit dem Reset (der bei Oszillator D ja nicht zum gleichen Zeitpunkt wie die Richtungsänderung erfolgen muss) erhält man also ziemlich komplexe Schwingungsformen.

Dreieck-Ausgangssignal der Oszillatoren A bis C des A-143-4 (oben) mit dem Res/Dir-Gatesignal (unten). Die Richtung des Oszillators wird immer nach oben gelenkt.

Im Vergleich dazu das Reset/Direction-Verhalten des Oszillators D, Reset und Direction werden vom gleichen Oszillator ausgeführt (d.h. nur der „Reset“-Eingang wird verwendet):

Reset & Direction „UP“.
Reset & Direction „DOWN“.
Reset & Direction „BOTH“.

Wenn beim Oszillator D nur der „Direction“-Eingang (ohne „Reset“) verwendet wird, sieht das so aus:

Direction „UP“.
Direction „DOWN“.
Direction „BOTH“.

Bislang haben wir nur die Auswirkungen auf den Dreiecks-Ausgang betrachtet. Hier finden die deutlichsten Veränderungen der Schwingungsform statt. Aber auch mit dem Rechtecks-Ausgang lassen sich interessante Effekte erzielen:

Der Reset (Oszillatoren A-C) führt zu unregelmäßig verkürzten Pulswellen zwischen den Rechtecken.

Im Klangbeispiel werden sowohl die Frequenz des „Master“-Oszillators, als auch des „Slave“-Oszillators (mit Rechteckschwingung) variiert:

Rechteckschwingung eines A-143-4 Oszillators (aus der Gruppe A bis C), mit Reset durch einen weiteren Rechteck-Oszillator.

Klangbeispiel – Reset und Direction unabhängig voneinander

Der Oszillator D (Dreiecks-Ausgang) aus dem A-143-4 wird von zwei weiteren Oszillatoren (beide Rechteck) über den „Reset“- und den „Direction“-Eingang (Direction „both“) beeinflusst. Die Frequenzen aller drei Oszillatoren werden während des Klangbeispiels manuell verändert.

Unabhängige Steuerung von Reset und Direction.

„Oscillator Lock“

Beim A-143-4 wurden vier Oszillatoren auf engstem Raum untergebracht und das nicht nur äußerlich, sondern auch tatsächlich auf der Platine. Das kann zu einem interessanten (aber nicht immer gewünschten!) Nebeneffekt führen: Sobald sich die Frequenzen von zwei Oszillatoren sehr nahe kommen, kann es passieren dass sie sich gegenseitig „einfangen“ und ihre Frequenzen synchronisieren (oscillator lock).

Klangbeispiel – Summenausgänge und „Oszillator Lock“

Hier wird der Summen-Ausgang für die Dreiecks-Signale (links im Stereobild) und der Summen-Ausgang für die Rechtecks-Signale (rechts im Stereobild) geichzeitig verwendet. Ein A-143-9 VC Quadrature LFO moduliert mit seinen vier phasenversetzten Sinus-Ausgängen die Frequenzen der A-143-4 Oszillatoren, ein zweiter A-143-9 führt – ebenfalls phasenversetzt – die Resets und Richtungsänderungen durch (bei Oszillator D Reset und Richtungsänderung „both“). Während des Klangbeispiels werden sowohl die Frequenzen der beiden Steuer-LFOs, als auch die Frequenzen und Modulationsstärken bei den vier Oszillatoren des A-143-4 manuell verändert. Der stets sehr „harmonisch“ wirkende Ausgangsklang wird deutlich dadurch bestimmt, dass sich die Frequenzen der vier Oszillatoren im A-143-4 immer wieder auf gemeinsame Frequenzen bzw. Teilerverhältnisse „einklinken“.

Summenausgänge mit gemeinsamer Modulation bzw. gemeinsamem Reset/Direction durch zwei A-143-9 VCLFOs.

Konfiguration über die Platine

Art der Richtungsänderung und Bus-Steuerspannung:

Auf der kleineren Platine „BOARD A“ befinden sich vier Jumper für die Art der Richtungsänderung der Oszillatoren A-C, sowie der Verbindung zu einer Steuerspannung auf dem A-100-Bus, die die Frequenz aller vier Oszilllatoren beeinflussen kann.

Jumper JP5 bis JP8 auf der kleineren „Huckepack-Platine“ Board A.
Jumper:Funktion:
JP5 / Oszillator Alinks = UP (Werkseinstellung), rechts = DOWN, ohne Jumper = BOTH
JP6 / Oszillator Blinks = UP (Werkseinstellung), rechts = DOWN, ohne Jumper = BOTH
JP7 / Oszillator Coben = UP (Werkseinstellung), unten = DOWN, ohne Jumper = BOTH
JP8 / A-100-BusJumper gesteckt = Verbindung zum A-100-Bus,
ohne Jumper = keine Verbindung

Auf der Platine „BOARD B“ befinden sich weitere Jumper, die für die Oszillatooren zusätzliche Konfigurationsmöglichkeiten eröffnen:

Steuerbereich der „Freq.“-Regler:

Sind die folgenden Jumper gesetzt, beträgt der Steuerbereich des jeweiligen „Freq.“-Reglers +/- 5 Oktaven (Werkseinstellung), ohne Jumper beträgt er +/- 1 Oktave.

Jumper JP9 bis JP13 und JP17 bis JP21 auf Board B unter der „Huckepack-Platine“ Board A (hier demontiert und nach links geklappt).
Jumper:Betrifft „Freq.“-Regler:
JP9von Oszillator A
JP10von Oszillator B
JP11von Oszillator C
JP12von Oszillator D
JP13gemeinsamer Regler für alle Oszillatoren (ganz unten)

Super Low Mode:

Der „Super Low Mode“ ist eigentlich nur eine Vorbelegung der „CV In 2“ – Buchsen (Schaltbuchsen) mit einer negativen Spannung. Bei komplett geöffneten „CV In 2“ – Reglern auf Position 10 wird dadurch die Frequenz der entsprechenden Oszillatoren (oder aller Oszillatoren gemeinsam beim „Common“-Regler ganz unten) stark reduziert. An Stelle der Jumper kann man auch die „CV In 2“-Regler auf 0 stellen oder ganz einfach einen Blindstecker in die entsprechende Eingangsbuchse stecken. Sprich: Das Entfernen dieser Jumper kann man sich getrost sparen.

Sind die folgenden Jumper gesetzt, arbeiten die entsprechenden Oszillatoren im „Super Low Mode“ mit vorbelegter negative Spannung auf den „CV In 2“-Eingängen (Werkseinstellung), ohne Jumper entfällt diese Vorbelegung (vgl. vorige Abbildung der Platine).

Jumper:Oszillator:
JP17alle Oszillatoren über den gemeinsamen „CV In 2“-Regler
JP18Oszillator A
JP19Oszillator B
JP20Oszillator C
JP21Oszillator D

Reset und Direction:

Sind die folgenden Jumper gesetzt, werden für den jeweiligen Oszillator Reset und Richtungsänderung gleichzeitig ausgeführt (Werkseinstellung). Ohne Jumper erfolgt lediglich ein Reset auf 0 Volt ohne Richtungsänderung.

Jumper JP14 bis JP16 auf Board B, links neben der „Huckepack-Platine“ Board A.
Jumper:Oszillator:
JP14Oszillator A
JP15Oszillator B
JP16Oszillator C

Versionsunterschiede

In der ersten Auflage des Moduls waren die Schalter für LFO- und VCO-Modus noch falsch beschriftet. Oben stand „low“ statt „VCO“ und unten „high“ statt VCLFO“.

Alternativen

Alternativen für den A-143-4 sind eher rar, und dann mit deutlich anderer Funktionalität. Wenn es lediglich um vier LFOs ohne Spannungssteuerung und Reset-Optionen geht, dann ist wahrscheinlich der A-143-3 Quad LFO oder sein „Slim Line“ – Bruder A-145-4 Quad LFO die bessere Wahl, zumal beide nicht das Problem (oder Feature!) des Oscilllator Lock haben und der A-143-3 zusätzlich Sägezahn anbietet.

Reset-Optionen, aber keine echte Spannungssteuerung hat der zum LFO umschaltbare A-143-1 Complex Envelope Generator.

Nur ein einzelner LFO, dafür mit einer Fülle von Optionen, Spannungssteuerung, Reset und allen gängigen Schwingungsformen ausgestattet ist der A-147-2 VC Delayed LFO.

Deutlich problemloser im Audiobereich einsetzbar als der A-143-4 und ebenfalls mit Reset-(Sync-)Optionen ausgestattet ist der A-111-4 Quad Precision VCO.

Technische Daten

Breite22 TE
Tiefe60 mm
Strombedarf100 mA (+12V) / -100 mA (-12V)

A-167 Analog Comparator / Subtractor / Offset Generator

Das Modul wird nicht mehr hergestellt.

Der A-167 Analog Comparator kann Spannungen miteinander vergleichen und dabei ein Gatesignal erzeugen.

Die Möglichkeiten sind vielfältig: Vergleich zweier externer Spannungen, Vergleich einer Spannung (normal oder invertiert) mit einem positiven oder negativen Schwellwert, Vergleich der Differenz zweier externer Spannungen mit einem Schwellwert.

Dabei geht das Modul ganz einfach „mathematisch“ vor: Die beiden Eingangssignale (jeweils nach Bedarf abgeschwächt) werden voneinander subtrahiert und die manuelle Offsetspannung zum Ergebnis addiert. Wenn die Summe größer als 0 V ist, dann wird ein positives Gatesignal erzeugt, sonst nicht. Alles klar?

Bedienelemente

Eingänge:

CTRL-A167-IN

Ausgänge:

CTRL-A167-OUT

Regler / Schalter:

CTRL-A167-SW

Ein ADSR als „LFO“

Das Modul A-143-1 (Complex Envelope) macht es uns vor: Mit Hilfe eines Comparators lässt sich aus jedem Hüllkurvengenerator während der Ausklingphase (Decay oder Release) ein neuer Trigger erzeugen, der dann wieder zum Re-Triggern des Hüllkurvengenerators eingesetzt werden kann. Aus einem ADSR-Generator ist so ein LFO mit sehr variabler Schwingungsform geworden!

Ein A-140 ADSR im „LFO-Modus“ – mit A-167 Comparator und A-162 Trigger Delay zur Steuerung.

Die Einstellung eines ADSR-LFOs erfordert ein wenig Fingerspitzengefühl, hilfreich dabei ist die Verwendung eines Trigger Delays zur Einstellung der Gate-Länge. Der A-167 erzeugt ein Gate- / Triggersignal beim Erreichen einer niedrigen Spannung (Release-Phase) des ADSR, würde aber – direkt als Gate für den A-140 eingesetzt – bald wieder ausschalten, da in der Attack-Phase die Spannung wieder erhöht wird. Das A-162 Trigger Delay kann aber ein Gate mit fest definierter Länge erzeugen, das dann die Hüllkurve komplett durchfahren lässt.

Andererseits – und das hatte ich im Buch noch nicht bedacht: Warum nicht einfach einen LFO mit Rechteckausgang als Gate für den ADSR verwenden? Der Aufwand, die LFO-Frequenz an die Parameter des Hüllkurvengenerators anzupassen ist eher geringer als bei der komplexen Verbindung von Comparator, Trigger Delay und ADSR. Idealerweise nimmt man dafür einen A-146, bei dem man auch die Pulsbreite des Rechtecksignals einstellen kann. Bei einem herkömmlichen LFO ist dann doch wieder der Comparator nützlich und man verwendet einen LFO mit Dreicksignal als Eingang für den A-167 und stellt am Comparator die Gate-Länge ein.

Klangbeispiel: Ein A-140 ADSR wird durch den A-167 immmer wieder neu gestartet und steuert einen A-111-5 Mini Synthesizer. Das Trigger Delay kommt in diesem Fall nicht zum Einsatz.

Der Gap-Regler

Der Gap-Regler sorgt im Prinzip für eine leichte Verschiebung von Start und Ende des erzeugten Rechtecksignals. Einen ähnlichen Effekt kann man mit einem zwischen Eingangssignal und Comparator geschalteten A-170 Slew Limiter erzielen. Wir sehen oben ein Dreieck aus einem A-111-1, unten das vom A-167 abgeleitete Rechteck.

Ohne Gap.
Gap deutlich erhöht – das Rechtecksignal wird später ausgelöst und endet später.

Offsetgenerator

Das Modul kann auch als einfacher Offsetgenerator (vergleichbar mit dem A-183-2) verwendet werden: Die reine interne Offsetspannung steht am Ausgang „Analog Sum“ zur Verfügung, bei Bedarf kann eine externe Spannung hinzugefügt (Eingang „+In“) oder abgezogen (Eingang „-In“) werden.

Der Comparator als Waveshaper

Das Dreiecksignal geht als Eingangssignal in den Comparator und in den VCA. Im Comparator wird ein Gatesignal in VCO-Frequenz erzeugt. Damit wird der VCA gesteuert der bestimmt, welche Anteile des Dreiecksignals erhalten bleiben.

Der Comparator ist „eigentlich nur“ ein Modul, das aus dem Vergleich zweier Spannungen ein Gatesignal erzeugen kann.

Das klingt zunächst noch nicht nach „Klangverbieger“. Aber Sie erinnern sich: Der A-137-2 Wave Multiplier II arbeitet mit Comparatoren, deren Gatesignal zum Eingangssignal addiert wird. Genauso könnte man aber auch multiplizieren: Dazu verwenden wir einen Verstärker für das Eingangssignal, der über das Gatesignal des Comparators gesteuert wird.

Das Ergebnis erinnert an Pulsbreitenmodulation – aber mit einem Dreiecksignal:

Offset ist noch recht hoch.
… noch niedriger …
Etwas niedrigeres Offset.
Die Offsetspannung wird noch niedriger eingestellt.

Das war – als ich gerade das Doepfer-Buch schrieb – eine großartige Idee. Leider funktioniert sie auch deutlich einfacher und ganz ohne A-167 Comparator. Man muss einfach nur das vom VCO gleichzeitig erzeugte Rechteck-/Puls-Signal des Oszillators an Stelle des A-167 verwenden. Das war es, mehr braucht es gar nicht…

Zwei VCOs als Eingangssignale

Etwas interessanter wird es wieder, wenn beim oben vorgestellten Patch an Stelle der konstanten Offsetspannung ein zweiter VCO (Eingang „-In“) angeschlossen wird, dann erhält man bei leichter Verstimmung der VCOs ein lebhaftes und obertonreiches Spektrum:

Zwei A-110-1 VCOs als Eingangssignale (Sägezahn und ein 3 Oktaven höherer Sinus).

Hüllkurve statt Gate

Sie können an Stelle des Gatesignals auch eine schnelle Hüllkurve verwenden, die vom Gatesignal des Comparators ausgelöst wird. Dadurch lässt sich das Signal nicht nur in der Phase verschieben, sondern auch verändern:

Die Schwingung wird durch »Attack« und »Release« geglättet, das Verhältnis von »Decay« und »Sustain« bestimmt zusätzlich (neben dem »Offs.«-Regler des Comparators) die Breite und Form der erzeugten Schwingung.
Der A-167 Comparator löst eine A-140 ADSR-Hüllkurve aus, die über den A-130 VCA die Schwingungsform des A-110-1 VCOs beeinflusst.

Auch hier kann man freilich an Stelle des Comparators ganz einfach das Rechteck-/Puls-Signal des Oszillators verwenden. Kleinere Klangunterschiede gibt es lediglich bei Dreieck und Sinus in Kombination mit dem „Gap“-Regler des Comparators, der das erzeugte Rechtecksignal etwas verschieben kann und dann andere Teile der ursprünglichen Schwingung verstärkt.

Rhythmisches – Klangbeispiele

Einn Modul, das Rechtecksignale erzeugen kann ist natürlich auch immer ein Kandidat für die Erzeugung von rhythmischen Strukturen. Hier haben wir sogar die Möglichkeit, unterschiedlich lange Gate-Signale zu gewinnen.

Um halb-zufällige rhythmische Muster zu erzeugen, kann man zwei unabhängige LFOs mit Dreieck-Signalen als Eingangssignale für „+In“ und „-In“ verwenden. Je nach Stellung der beiden Eingangs-Abschwächer und dem Offset-Regler entstehen interessante Muster von unterschiedlich langen Rechteck-Signalen im Comparator, die hier als Gatesignal für einen A-111-5 verwendet werden.

Bei unserem Beispiel verwende ich zwei Dreiecks-Ausgänge aus einem A-143-3, die LFOs sind auf unterscheidliche Geschwindigkeiten eingestellt, die Eingangspegel im A-167 sind gleich groß. Im Verlauf des Beispiels drehe ich den Offset-Regler von „-5″ langsam nach oben (etwa bis 2’00“) und dann wieder etwas zurück in den leicht negativen Bereich. Danach verändere ich die Geschwindigkeiten beider LFOs und nochmal in kleinerem Umfang den Offset-Regler:

Alternativen

Da das Modul nicht mehr produziert wird, stellt sich die Frage nach den Alternativen natürlich besonders deutlich.

Relativ einfach hat man es noch, wenn es lediglich um die Erzeugung von sich selbst neu startenden Hüllkurven geht. Hier gibt es eine Reihe von Modulen, die automatisch in einer Wiederholungsschleife arbeiten können: A-141-2 VCADSR, A-142-4 Quad Decay, A-143-1 Quad AD, A-143-2 Quad ADSR oder auch der A-171-2 VC Slew Processor. Bei diesen Modulen ist die „Schleifenbildung“ normalerweise sogar deutlich einfacher als mit einem Comparator.

Beim Einsatz als klangformender Waveshaper oder für rhythmische Experimente wird die Auswahl recht klein. Eigentlich gibt es da nur noch den neuen A-168-1 PWM-Generator, der aus einem eher puristisch gestalteten Comparator mit modulierbarem Offset besteht. Zusätzliche Funktionen wie Inverter usw. müsste man dann über andere Module ergänzen (vgl. auch die Beschreibung des A-168-1).

Technische Daten

Breite8 TE
Tiefe40 mm
Strombedarf20 mA (+12V) / -10 mA (-12V)

A-168-1 PWM Generator

Der A-168-1 ist ein kleines Hilfsmodul, das für LFOs oder VCOs ohne Rechteck/Puls eine in der Breite modulierbare Rechteck- bzw. Pulsschwingung erzeugt. Gerade für LFOs ist das ein interessantes Feature, da fast alle LFOs zwar eine fixierte symmetrische Rechteckschwingung erzeugen können (der A-146 beherrscht immerhin manuell einstellbare Pulsbreiten), aber keiner lässt eine Modulation der Pulsbreite zu.

Bei den VCOs sieht es etwas entspannter aus: Bis auf die beiden „Thru Zero“ VCOs A-110-4 und A-110-6 beherrschen alle Doepfer-VCOs variable Pulsbreiten und deren Modulation über Steuerspannungen.

Intern arbeitet eine Comparatorschaltung wie im A-167, die bei Überschreitung einer Spannung ein Gatesignal erzeugt und bei Unterschreitung dieses Gate wieder beendet. Die variable Pulsbreite resultiert aus unterschiedlich großen Schwellwerten, bei denen das Gate ausgelöst wird. Damit wird auch klar, dass für eine variable Pulsbreite wenigstens eine flach ansteigende oder abfallende Flanke beim Eingangssignal benötigt wird (Dreieck, Sinus, Sägezahn, ADSR-Hüllkurven usw.) – bei einem Rechteck als Eingangssignal kann lediglich wieder dieses Rechteck erzeugt werden (was wenig Sinn machen würde).

Schema für die Erzeugung einer variablen Pulsschwingung durch unterschiedliche Schwellwerte zum Auslösen (und wieder Beenden).

Bedienelemente

Eingänge:

CTRL-A168-1-IN

Ausgänge:

CTRL-A168-1-OUT

Die Ausgänge für normales und invertiertes Signal sind vertauscht.

Regler / Schalter:

CTRL-A168-1-SW

Wie sieht das aus mit den Rechtecken?

Wenn man z.B. einen A-110-1 als Eingangssignal verwendet, dann kann man sich die von verschiedenen Eingangssignalen abgeleiteten Rechteckschwingungen sehr schön auf dem Oszilloskop (oder in der vergrößerten Ansicht der DAW-Aufnahme) ansehen. Oben ist jeweils das Eingangssignal und unten das Ausgangssignal aus dem „invertierten“ Ausgang (das aber phasenrichtig ist, das invertierte Signal liegt am „Standard“-Ausgang an):

Rechteckschwingung aus Sinus.
Rechteckschwingung aus Rechteck…
Rechteckschwingung aus Sägezahn.
… und Puls aus Puls!

Der „PW“-Regler steht immer in der Mitte, bei Sinus, Dreieck und Sägezahn kann man damit die Pullsbreite des Ausgangssignals einstellen. Wenn ein Rechteck- oder Puls-Signal als Eingangssignal verwendet wird, funktioniert das prinzipbedingt natürlich nicht mehr. Egal welcher Schwellwert verwendet wird, er wird bei der ansteigenden Flanke des eingehenden Rechtecks sofort überschritten und bei der absteigenden Flanke sofort unterschritten. Dem entsprechend erzeugt eine Pulsschwingung als Eingangssignal auch gleich eine Pulsschwingung als Ausgangssignal (natürlich mit gleicher Breite).

Klangbeispiel: Hüllkurve als Eingangssignal und PWM

Eine A-140 ADSR-Hüllkurve wird von einem schnellen A-143-3 LFO getriggert, so dass sie selbst ein Audiosignal ausgibt. Durch die rein positive Spannung der Hüllkurve muss der „PW“-Regler vergleichsweise weit nach links gestellt werden. Eine Modulation der Pulsbreite (durch einen langsamen A-110-6 – Sinus) ist ebenfalls nur in einem engen Reglerbereich möglich, dann unterschreitet der interne Schwellwert offensichtlich die 0V und das Signal reisst ab. Wir hören links das konstante ADSR-Signal und rechts den Ausgang des A-168-1:

Von der Hüllkurve abgeleitetes Rechteck-Signal.

„Poor Man’s“ A-167?

Der A-167 war ein einigermaßen komplexes, aber dadurch auch sehr flexibles Tool, das leider nicht mehr hergestellt wird. Wie der A-168-1 besteht er im Prinzip aus einem Comparator, ist aber ungleich reichhaltiger mit Zusatzfunktionen ausgestattet (zwei regelbare Eingänge plus interner positiver oder negativer Offset-Spannnung, Hysterese-Funktion für unterschiedliche Ein- und Ausschalt-Spannungen usw.)

Um den A-167 nachzubauen, müsste man den A-168-1 zumindest um einen A-183-2 Offset-Polarizer, vielleicht auch um einen A-138c Polarizing Mixer und einen A-183-3 Amplifier ergänzen.

Beim „Gap“-Regler des A-167 wird es etwas schwieriger. Er verschiebt gleichzeitig den Schwellwert zum Start des erzeugten Gate-Signals nach oben und den Schwellwert für dessen Ende nach unten. Hier könnte man mit einem Slew Limiter wie dem A-170 experimentieren, der die Eingangsschwingung entsprechend „verschleift“.

Konfiguration auf der Platine

Auf der kleinen Platine finden wir diesmal keine Jumper für optionale Funktionen, sondern zwei Trimmpotis zur Anpassung an unterschiedliche Eingangs-Module. Man sieht daran, dass das Konzept weniger ein allgeimein einsetzbarer Comparator, sondern – Nomen est Omen – ein PWM-Generator ist, der einem bestimmten VCO oder LFO relativ fest zugeordnet wird.

  • P4: Hier wird die Offset-Spannung beim Mittelanschlag des „PW“-Reglers eingestellt. Für VCO-Signale sollte die Werkseinstellung passen, beim Einsatz mit einem ADSR-Generator (der nur positive Spannungen liefert) muss man hier anpassen. Wer das nicht möchte, kann auch einen A-183-2 zwischen Eingangssignal und PWM-Generator schalten.
  • P3: Hier wird die Verstärkung der Steuerspannung eingestellt. Bei sehr schwachen Eingangssignalen muss hier ggf. eine echte Verstärkung erfolgen. Wer nicht mit dem Trimmpoti arbeiten möchte, verwendet alternativ einen A-183-3 zwischen Modulationsquelle und PWM-Generator.
Die beiden Trimmpotis auf der Platine.

Technische Daten

Breite4 TE
Tiefe20 mm
Strombedarf20 mA (+12V) / -20 mA (-12V)

A-141-2 Voltage Controlled Envelope Generator VCADSR / VCLFO

Pimp my VCADSR! Der Vorgänger A-141 war für viele Zwecke ein mehr als brauchbares Modul, aber im Detail gab es dann doch noch „Wünsche“: So schnell und „snappy“ wie der legendäre A-140 war der A-141 nicht und loopbare Hüllkurven wie beim A-143-1 oder A-143-2 wären doch manchmal auch recht nett…

Beim neuen A-141-2 hat Doepfer nun so ziemlich alles hineingepackt, was man mit einer einzelnen ADSR-Hüllkurve technisch anstellen kann:

  • Spannungssteuerung – klar, hatten wir schon beim Vorgänger,
  • zusätzlich wurde noch ein VCA eingebaut, der dann spannungsgesteuert die Gesamtlautstärke regelt,
  • ein gemeinsamer CV-Eingang, der alle drei Zeit-Parameter Attack, Decay und Release steuert,
  • ein Range-Schalter für besonders schnelle oder besonders langsame Hüllkurven (Drones!),
  • Triggerausgänge die beim Ende der Attack oder der Release-Phase feuern und für einen LFO-Einsatz verwendet werden können,
  • neben dem normalen Ausgang noch einen invertierten Ausgang, sowie einen Ausgang, der hinter dem bereits erwähnten VCA liegt.

Bedienelemente

Eingänge:

CTRL-A141-2-IN1

CTRL-A141-2-IN2

Über eine Steckbrücke (Jumper) kann das Modul mit dem A-100 Bus verbunden werden und dort anliegende Gate-Signale – z.B. von einem Midi-Interface – verarbeiten.

Ausgänge:

CTRL-A141-2-OUT

Regler / Schalter:

CTRL-A141-2-SW

Versionsunterschiede

Die erste Version des A-141-2 war noch mit einfachen Abschwächern für die vier Steuerspannungseingänge ausgestattet. Die beiden A-141-2 in meinem Rack stammen noch aus dieser Generation, auch die Klangbeispiele wurden mit ihnen erstellt. Die aktuellen Module verfügen stattdessen über vier bipolare Regler, die rechts von der „12 Uhr Position“ die Steuerspannungen positiv vergrößern, links von der Mittelstellung dagegen eine Invertierung der Steuerspannung vornehmen, bis zu einem negativen Maximum beim Linksanschlag des Reglers.

Die erste Version ist an den Beschriftungen „0 … 10“ für die Abschwächer erkennbar, die aktuellen Module sind jeweils mit „-5 … 0 … +5“ beschriftet.

Grundprinzip des Moduls

Die Ergänzung eines spannungsgesteuerten Hüllkurvengenerators durch einen „Onboard“-VCA erinnert etwas an den neuen A-147-2 VC LFO. In beiden Fällen ist so etwas sehr praktisch, aber man braucht halt etwas länger, um alles zu überblicken.

Der A-141-2 ist zunächst einmal ein ADSR-Hüllkurvengenerator, dessen vier Parameter über Steuerspannungen beeinflusst werden können. Höhere Steuerspannungen führen zur Verlängerung der Attack-, Decay bzw- Release-Phase und zu einer Erhöhung des Sustain-Levels. Bei den aktuellen Modulen lässt sich das über die bipolaren Regler umkehren, so dass höhere Steuerspannungen zu einer Verkürzung der ADR-Phasen bzw. einem Absenken des Sustain-Levels führen. Beim Einsatz zusammen mit einer anschlagdynamischen Tastatur möchte man meist bei stärkerem Anschlag (höhere Spannung) kürzere Phasen und ein höheres Sustain-Level erzielen. Das ist also recht praktisch.

Zusätzlich zu den einzelnen Steuerspannungseingängen gibt es einen „Comm. CV“ – Eingang, der sich auf die Dauer der drei Phasen gleichzeitig auswirkt. Höhere Steuerspannungen verkürzen bei diesem Eingang die Phasen (analog zu einem VCLFO). Ein Abschwächer für diesen Eingang ist nicht vorhanden.

Wie beim A-140 finden wir einen dreistufigen Range-Schalter, um extrem schnelle oder extrem langsame Hüllkurven zu erzeugen, ohne dass die Reglerwege dabei unkomfortabel enge Wertebereiche aufweisen.

Zwei Gate-Signale werden im Verlauf der Hüllkurve erzeugt und können z.B. zum erneuten Auslösen des A-141-2 eingesetzt werden, der dann in einem LFO-Modus läuft: EOA und EOR.

EOA wird zum Ende der Attack-Zeit gestartet und dauert, bis das ursprüngliche Gate-Signal endet. Verbindet man den EOA-Ausgang mit dem Retrig-Eingang, dann erhält man nach dem Anstieg der Hüllkurve einen LFO mit steigendem Sägezahn, solange das Gate-Signal aktiv ist.

EOR wird kurz vor Ende der Release-Phase gestartet (auf der Platine justierbar) und dauert bis zum Ende der nächsten Attack-Phase. Verbindet man den EOR-Ausgang mit dem Gate-Eingang, erhält man eine zyklische Attack-Release-Hüllkurve. Änderungen bei Decay oder Sustain bewirken dabei nur minimal andere Hüllkurven, da das EOR-Gate bereits beim Ende der Attack-Phase abbricht und der ADSR somit unmittelbar in die Release-Phase übergeht.

Die Gate-Ausgänge EOA und EOR in Abhängigkeit von Gate und den ADSR-Phasen.

Im Oszilloskop sieht das so aus, unten sehen wir immer die tatsächliche ADSR-Hüllkurve:

Eingangs-Gate und ADSR-Ausgabe des A-141-2.
EOA und ADSR.
EOR und ASDR.

Für die eigentliche Hüllkurve gibt es drei Ausgänge. Standard sind der normale Ausgang „Fixed Out“, sowie ein invertierter Ausgang „Inv. Out“. Zusätzlich dazu ist im Modul noch ein kleiner VCA eingebaut, über den der dritte Ausgang „Var. Out“ versorgt wird. Die Steuerung des VCAs erfolgt über den Eingang „Lev. CV“.

Konfiguration über die Platine

Auf der Hauptplatine lassen sich folgende Optionen einstellen:

  • Comm. CV: Wenn der Jumper rechts gesteckt ist, verringert die Steuerspannung am Eingang „Comm. CV“ die Attack-, Decay- und Release-Phasen (Standard), in der linken Position verlängert höhere Steuerspannung diese Zeiten.
  • EOR Threshold: Trimmpoti für den Schwellwert, ab wann das EOR Gate gestartet wird.
  • Bus Gate: Wenn der Jumper gesetzt ist, reagiert das Modul auf Gatesignale auf dem A-100-Bus, ohne Jumper nicht.
  • Out VCA/Pol.: Wenn der Jumper gesetzt ist, arbeitet der integrierte VCA als Polarisierer, ohne Jumper als konventioneller VCA (Standard).
Jumper und Trimmpoti auf der Hauptplatine.

Auch die kleine Platine an den Steuerspannungs-Abschwächern hat Optionen:

  • CVA – CVD: Der Steuerspannungseingang CVD ist mit der Spannung am Eingang CVA vorbelegt.
  • CVD – CVR: Der Steuerspannungseingang CVR ist mit der Spannung am Eingang CVD vorbelegt.

Klangbeispiel – das Modul als Oszillator

Mit der oben genannten Konfiguration (EOR an Gate In) kann der A-141-2 als Oszillator verwendet werden. Da das Gate nach der Attack-Phase abbricht, wird im Prinzip eine zyklische AR-Hüllkurve erstellt. Die Schwingungsform lässt sich dabei über den Attack und den Release-Regler einstellen, dabei wird allerdings gleichzeitig die Frequenz verändert.

Manuelle Veränderungen von Attack und Release.

Klangbeispiel – zyklische Attack-Hüllkurve

Bei Verbindung des EOA-Ausgangs mit dem Retrigger-Eingang erfolgt nach einmaligem Durchlauf der Attack-Phase eine zyklische – etwas verkürzte – Attack-Phase. Im Beispiel wird das Filter eines A-111-5 Mini Synthesizers von der A-141-2 Hüllkurve moduliert, beide Module werden einfach von einem manuellen Gate gesteuert. Beim zweiten Ton verändere ich manuell die Attack-Zeit des A-141-2. Nach Beenden des manuellen Gates wird wie gewohnt die Release-Phase eingeleitet.

Steuerung der Filtereckfrequenz mit wiederholter Attack-Phase.

Andere Kurven-Charakteristiken

Doepfer weist darauf hin, dass die Charakteristik der Attack-, Decay und Release-Phasen über die Einspeisung des eigenen ADSR-Ausgangssignals in die Steuerspannungseingänge der Phasen verändert werden kann.

Standard ADSR aus dem A-141-2.

Normalerweise ist die Attack-Phase leicht „konvex“, steigt also steil an und flacht dann eher ab, während die Decay- und Release-Phasen eher „konkav“ aussehen, sie fallen also schnell ab, um dann abzuflachen.

Um die Form der Attack-Phase zu ändern, wird das invertierte ADSR-Signal als Steuerspannung in CVA verwendet, bei Decay und Release ist es die normale Form des ADSR-Signals in CVD und CVR.

Geänderte Attack-Phase.
Geänderte Decay- und Release-Phasen.

Technische Daten

Breite14 TE
Tiefe70 mm
Strombedarf40 mA (+12V) / -30 mA (-12V)

A-147-2 Voltage Controlled Delayed Low Frequency Oscillator

Im Vergleich zum recht übersichtlichen Vorgänger A-147 ist der neue VCDLFO (Voltage Controlled Delayed LFO) schon ein Monster. Nicht weniger als 12 Anschlussbuchsen an einem nur 8 TE breiten Modul sind schon eine Ansage in Sachen Komplexität auf engstem Raum.

Tatsächlich hat Doepfer dem spannungsgesteuerten LFO noch eine Delay-Funktion (eigentlich ist es eine langsame Steigerung der Amplitude und keine Einschaltverzögerung, wie der Name „Delay“ vielleicht vermuten lässt) mit auf den Weg gegeben. Bei Bedarf wird die Amplitude des LFOs langsam zunehmen. Dafür ist neben einer einfachen Attack-Hüllkurve ein kleiner VCA mit eingebaut, durch den das LFO-Signal geschleust wird. Der VCA kann allerdings auch als spannungsgesteuerter Polarisierer arbeiten und hat je einen frei patchbaren Eingang, Ausgang und Steuereingang, so dass Ringmodulator- oder Waveshaper-Anwendungen möglich sind.

Bedienelemente

Eingänge:

CTRL-A147-2-IN

Ausgänge:

CTRL-A147-2-OUT

Regler / Schalter:

CTRL-A147-2-SW

Wer braucht das Modul?

Der A-147-2 ist mit Sicherheit der komplexeste LFO von Doepfer, obwohl er sich auf 8 TE beschränkt. Dass dabei etwas die Übersichtlichkeit leidet, liegt in der Natur der Sache. Wer noch das Vorgängermodell hat, kann die gleiche Funktionalität erhalten, wenn er zusätzlich einen kleinen VCA/Polarisierer und einen Hüllkurvengenerator einsetzt. Das braucht dann zwar ein Mehrfaches an Platz, ist dafür aber auch etwas leichter „auf den ersten Blick“ zu erfassen. So bietet sich der neue A-147-2 insbesondere für Modularisten an, die auf kleinstem Raum agieren möchten oder müssen. Schließlich kann man durch die vollständig freie Patchbarkeit notfalls VCA und Attack-Hüllkurve komplett unabhängig vom LFO einsetzen.

Konfiguration über die Platine

Mit einer Steckbrücke (Jumper) auf der Platine kann der LFO auch in einem extrem langsamen „Ultra Low Modus“ betrieben werden.

Wird der Jumper JP6 gesetzt, arbeitet der A-147-2 im „Ultra Low“ Modus. Dazu kann man den mit einem Oval markierten Jumper verwenden, der ansonsten keine Funktion hat.

Grundprinzip des Moduls

Doepfer hat so einiges in dieses Modul hineingepackt, was sich nicht unbedingt auf den allerersten Blick erschließt.

Zunächst haben wir einen spannungsgesteuerten LFO, der bis in den moderaten Audiobereich reicht (ca. 1 kHz). Das ist nicht weltbewegend, aber für so manche Klänge genügend. Die Steuerkennlinie des CV-Eingangs ist leider nicht 1V/Oktave, so dass man für einen „musikalischen“ Einsatz einen Sequencer ohne Quantizer (und ein gutes Stimmgerät) einsetzen sollte.

Alle vier erzeugten Schwingungsformen stehen an Einzelausgängen zur Verfügung, die Dreieckschwingung ist mit dem internen VCA vorverdrahtet. Die „In“-Buchse der VCA-Sektion ist eine Schaltbuchse, die diese Verbindung auftrennen kann. Hier kann man bei Bedarf eine der anderen Schwingungsformen anschließen oder auch den VCA / Polarizer komplett separat für andere Signale nutzen. In der „Polarizer„-Betriebsart invertiert der VCA das Eingangssignal, sobald die Steuerspannung negativ wird.

Ebenfalls mit dem VCA vorverdrahtet ist eine einfache Attack-Hüllkurve, auch sie kann über eine Schaltbuchse „CV“ vom VCA getrennt und durch eine andere Modulationsquelle ersetzt werden. Die Hüllkurve hat einen Triggger-Eingang, der hier mit „Delay Reset“ bezeichnet ist. Es gibt dafür keine Standard-Verbindung im Modul, beim Einschalten gibt die Hüllkurve eine Dauerspannung aus, so dass der VCA zunächst permanent geöffnet ist. Um die Hüllkurve auch für andere Module wie ein nachgeschaltetes Filter zu nutzen, gibt es einen Ausgang „Delay Out“. Auch die Hüllkurve hat einen Steuerspannungseingang, mit dem man die Länge der Attack-Phase bestimen kann. Steuerspannung und manueller Regler wirken gemeinsam auf die Geschwindigkeit der Hüllkurve.

Die Bezeichnungen „Delay“ und „Reset“ sind etwas ungewöhnlich gewählt, es handelt sich ja eigentlich um „Attack“ und „Trigger In„.

Der LFO als Klanglabor – Klangbeispiele

Sicher, man kann mit dem Modul auch ein langsam einsetzendes Vibrato oder Tremolo realisieren. Dazu wird einfach der Trigger der Synthesizer-Stimme parallel mit für den Reset-Eingang der A-147-2 – internen Hüllkurve verwendet. Bei jedem Tastendruck oder jedem Sequencer-Schritt wird dann auch die langsam einschwingende Amplitude des LFOs mit gestartet.

Aber richtig Spaß macht das Modul, wenn man den LFO und die Hüllkurve in Audiogeschwindigkeit einsetzt: Schnelle Aplituden- bzw. Ringmodulation sind dann ebenso möglich wie Waveshaping.

Im ersten Beispiel wird das Sinus-Signal des A-147-2 verwendet und in den internen VCA gepatcht. Das interne Rechteck-Signal ist der Trigger für das Starten der internen Attack-Hüllkurve. Der interne VCA ist als Polarizer geschaltet, ein A-143-3 moduliert mit einer Dreieckschwingung die Länge der Attack-Hüllkurve. Der LFO wird von einem A-155 Sequencer (ohne Quantizer) in seiner Frequenz gesteuert. Ich variiere die Frequenz des A-143-3.

Das interne Rechteck-Signal startet die Hüllkurve.

Beim nächsten Beispiel werden sowohl das Auslösen der Hüllkurve, als auch die Modulation der Attack-Länge von zwei LFOs eines A-143-3 gesteuert, der A-147-2 wird wieder durch einen A-155 gesteuert. Der interne VCA ist diesmal als VCA (ohne Polarisierung) geschaltet.

Zwei LFOs steuern Länge und Startpunkt der Hüllkurve.

Schließlich verwende ich an Stelle des A-143-3 einen A-147 als Modulationsquelle direkt für den internen VCA des A-147-2. Die Attack-Hüllkurve bleibt unbenutzt. Zunächst ist der interne VCA als konventioneller VCA geschaltet, wird aber im Laufe des Beispiels zum Polarizer umgeschaltet. Der A-155 Sequencer steuert wieder den A-147-2, zusätzlich wird bei jedem Schritt des Sequencers ein Reset des A-147 durchgeführt.

Ein zum Sequencer synchronisierter A-147 steuert den internen VCA.

Hier noch ein paar Detailbilder, wie eine Sinusschwingung durch die eigene Hülllkurve (getriggert vom internen Rechteck) und den VCA im Polarizer-Modus verändert wird:

Technische Daten

Breite8 TE
Tiefe55 mm
Strombedarf60 mA (+12V) / -40 mA (-12V)

A-133-2 Dual VC Polarizer

Der A-133-2 ist ein zweifacher spannungsgesteuerter Polarisierer, d.h. seine Eingangssignale (Audio oder Steuerspannungen) können wie bei einem herkömmlichen VCA verstärkt werden, bei negativer Steuerspannung oder entsprechender manueller Einstellung werden die Eingangssignale zusätzlich invertiert.

Dafür stehen pro Teilmodul ein Eingang, ein Steuerspannungseingang, ein Ausgang, sowie ein manueller Regler für Verstärkung / invertierte Verstärkung und ein Abschwächer für die Steuerspannung zur Verfügung.

Das ist zunächst einmal auch genau das, was auch der A-133 bietet, allerdings ist der mit 8TE genau doppelt so breit wie der „Slim Line“ A-133-2 (was ihn einerseits viel bequemer im Handling macht, aber auch mehr vom stets raren Platz im Case verbraucht).

Zusätzlich besitzt der A-133-2 aber noch einen weiteren Steuerspannungseingang pro Teilmodul: Hier kann die Steuerspannung selbst noch einal moduliert werden, diesmal allerdings nur konventionell über einen VCA und nicht noch einen weiteren Polarisierer.

Ein weiterer, nicht unwichtiger Unterschied besteht im Verstärkungsfaktor: Während der ursprüngliche A-133 bis zum Faktor 2,5 positiv oder invertiert verstärken kann, ist beim A-133-2 lediglich eine positive oder invertierte Verstärkung bis zum Faktor 1 möglich (wie bei den meisten gängigen VCAs). „Echte Verstärker“ sind rar, obwohl sie durchaus ihre Berechtigung haben, aber bei zu sehr verstärkten Spannungen (z.B. durch mehrere „echte Verstärker“ hintereinander in einem komplexen Patch) landet man auch mal bei Spannungen, die das eine oder andere Modul überfordern oder auch zu Schäden führen könnten.

Bedienelemente

Eingänge:

CTRL-A133-2-IN

Ausgänge:

CTRL-A133-2-OUT

Regler / Schalter:

CTRL-A133-2-SW

Unterschiede zum A-133

Auch wenn alle Einstellungen gleich sind, gibt es trotzdem klangliche Unterschiede zwischen dem A-133 und dem A-133-2, besonders beim Einsatz als Ringmodulator. Für eine Ringmodulation sind sowohl das Eingangssignal, als auch die Steuerspannung für die Polarisierung in Audio-Frequenz.

Der Grund liegt hauptsächlich im deutlich höheren Verstärkungsfaktor des älteren Moduls. Wenn sowohl Eingangssignal, als auch Steuerspannung einen vergleichsweise hohen Pegel aufweisen, kommt es beim A-133 zu hartem Clipping, beim A-133-2 nicht:

Eingangssignal und Steuerspannung von je einem A-110-1 VCO (Sinus-Ausgänge), die einen vergleichsweise hohen Pegel aufweisen, führen zu Clipping beim A-133.
Die gleichen A-110-1 VCOs mit gleichem Frequenzverhältnis (wieder Sinus) führen beim A-133-2 nicht zu Clipping. Der Rest ist vergleichbar mit dem klanglichen Ergebnis beim A-133.

Klangbeispiele

Im ersten Klangbeispiel werden zwei A-143-9 VCLFO/VCOs als Eingangssignal bzw. Modulationsquelle verwendet. Für einen „klassischen“ Ringmodulator-Einsatz ist der „Man.“-Regler in Mittelstellung und der Abschwächer „CV“ für den Steuerspannungseingang auf Maximum. Die Frequenzen der VCOs werden gleichzeitig über einen A-174-1 Joystick gesteuert.

Ringmodulator mit zwei A-143-9 als Eingangssignalen.

Beim nächsten Beispiel kommen wieder die beiden A-143-9 zum Einsatz, diesmal wird der „Man.“-Regler während der Aufnahme verändert und damit Pegel bzw. Polarität eines der beiden Signale zusätzlich manipuliert. Die Frequenzen der beiden VCOs bleiben konstant.

Ringmodulator mit zwei A-143-9 als Eingangssignalen, diesmal mit Veränderung des „Man.“-Reglers.

Beim nächsten Beispiel wird lediglich ein Eingangssignal von einem A-143-9 ohne Modulation verwendet. Der „Man.“-Regler wird vom Maximum zur Mitte (d.h. weitestgehendes Ausblenden des Signals) und dann zum Minimum (d.h. invertierte Ausgabe des Signals) und zurück zur Mitte bewegt. Man hört, dass das Eingangssignal beinahe vollständig ausgeblendet wird, wie auch die Schwingungsform-Bilder der Aufnahme zeigen.

Nur Eingangssignal ohne Modulation, Ausblenden und Invertieren, am Ende wieder Ausblenden.
Manuelle Steuerung von Amplitude und Polarisierung über den „Man.“-Regler – Gesamtsicht über die Aufnahme.
Herangezoomt an den Punkt des Übergangs zwischen positiver und invertierter Verstärkung des Eingangssignals: Das Signal wird fast vollständig ausgeblendet.

Im nächsten Beispiel werden zwei A-110-1 VCOs mit ihren Sägezahn-Ausgängen als Eingangssignal und Steuerspannung für die Polarisierung verwendet. Die obertonreichen Spektren führen im Vergleich zu den Sinus-Signalen der vorigen Beispiele zu deutlich komplexeren Klangveränderungen. Nachdem nach einer Weile die beiden VCOs auf fast gleiche Frequenzen gestimmt wurden, wird etwa ab 0:22 zusätzlich der Modulationseingang mit einem A-110-6 (Sägezahn-Ausgang) zur Modulation der Ringmodulation eingesetzt.

Modulierte Ringmodulation: Zwei A-110-1 als Eingangssignal und Steuerapannung, ein A-110-6 als Modulator für die Steuerspannung.

Beim nächsten Beispiel kommt keine Ringmodulation (mit ihrer Invertierung des Signals bei negativer Steuerspannung), sondern einfache Frequenzmodulation zum Einsatz. Dazu wird wieder ein A-110-1 VCO (Sägezahn-Ausgang) als Eingangssignal verwendet, es gibt keine externe Steuerspannung, aber ein A-110-6 VCO (ebenfalls Sägezahn-Ausgang) moduliert die „Man.“-Reglerstellung über den „Mod“-Eingang. Die Stärke der Modulation wird über einen dazwischen geschalteten A-183-1 geregelt. Dabei wird gezielt die „Thru Zero“-Fähigkeit des A-110-6 verwendet, um von fallendem zu ansteigendem Sägezahn zu wechseln.

Amplitudenmodulation mit einem A-110-6.

Im letzten Beispiel werden beide Teil-Module des A-133-2 für eine Stereo-Anwendung eingesetzt. Als Eingangssignale bzw. Steuerspannungen für die Polarisierung dienen wieder zwei A-143-9 VCLFO/VCOs. Der „Cosinus“-Ausgang ist jeweils das Eingangssignal, der Sinus-Ausgang des anderen A-143-9 ist die Modulationsquelle für die Polarisierung.

Stereo-Ringmodulator mit den Sinus-/Cosinus-Ausgängen von zwei A-143-9.

Technische Daten

Breite4 TE
Tiefe40 mm
Strombedarf20 mA (+12V) / -20 mA (-12V)

A-160-5 Voltage Controlled Clock Multiplier / Ratcheting Controller

Ratcheting Controller sind immer noch etwas ungewöhnliche Tools in der Modularwelt. Dabei haben bereits Tangerine Dream vor fast 50 Jahren ihre Sequencen mit ihnen spannend gestaltet.

Was macht ein Ratcheting Controller? Im Grunde haben wir das Gegenteil von einem Clock-Divider (wie etwa dem A-160-2) vor uns: Ein eingehendes Clock-Signal wird vervielfältigt, und zwar nach Möglichkeit so, dass die ausgegebene Clock auch rhythmisch-musikalisch zur ursprünglichen Clock passt. Im Gegensatz zum Clock-Divider kann die Elektronik dabei nicht einfach „abzählen“ und z.B. bei jedem vierten Eingangs-Trigger selbst ein Triggersignal ausgeben, sondern muss die durchschnittliche Frequenz der Eingangs-Trigger berücksichtigen und daraus eine eigene – vervielfachte – Trigger-Frequenz berechnen. Das bedeutet aber auch, dass sich Tempoänderungen bzw. Schwankungen der Eingangsfrequenz auf das vervielfachte Clock-Signal auswirken: Der A-160-5 benötigt etwas mehr Zeit, um sich an das neue Clock-Signal anzupassen, als ein einfacher Frequenzteiler.

Ratcheting

Das eigentliche Ratcheting geht aber über eine Vervielfachung des Eingangs-Clocksignals hinaus. Ansonsten könnte man ja auch einfach ein schnelleres Clocksignal wählen und für die langsamere Variante (die unserem A-160-5 als Eingangssignal dient) dann einen einfachen Clockteiler. Beim Ratcheting werden aber nur einzelne Schritte einer Sequenz mit einem schnelleren Clock-Trigger versehen und danach geht es wieder zurück zur ursprünglichen Geschwindigkeit.

Um das automatisiert zu steuern, verfügt der A-160-5 über einen Steuerspannungseingang: Hier kann man den Sequencer selbst oder einen zum Sequencer synchron laufenden Zufallsgenerator anschließen, die dann die Zahl der Trigger-Impulse für jeden Schritt der Sequenz festlegen.

Als Eingangs-Clocksignal für den A-160-5 sollte man tatsächlich einen Clock-Trigger mit konstanter Frequenz verwenden und nicht etwa einen der Trigger/Gate-Ausgänge des A-155 Sequencers: Das Auslassen eines Triggers im Sequencer über einen der 8 Kontrollschalter des A-155 würde den A-160-5 sonst ziemlich „aus dem Takt“ bringen. Man kann dennoch einzelne Sequencer-Schritte komplett auslassen, da der A-160-5 bei einer Steuerspannung von 0 V am „CV In“ Eingang die Erzeugung von Triggersignalen stoppt. Falls keine Spannungssteuerung verwendet wird: Bei komplett nach links gedrehtem „Manual“-Regler stoppt ebenfalls die Ausgabe von Triggersignalen.

Bedienelemente

Eingänge:

CTRL-A160-5-IN

Ausgänge:

CTRL-A160-5-OUT

Regler / Schalter:

CTRL-A160-5-SW

Versionsunterschiede

Die erste Auflage des A-160-5 hatte, wie bereits erwähnt, noch eine falsche Beschriftung „Divider Set“ anstatt „Multiplier Set“ neben dem Schalter für die verschiedenen Multiplizier-Reihen. Doepfer hat daneben aber auch einen kleinen Fehler im Zusammenspiel mit einem Sequencer ausgeräumt. In der ersten Auflage des Moduls hatte eine geänderte Steuerspannung erst auf den darauf folgenden Sequencer-Schritt Auswirkung. Wenn man das weiß, ist es keine große Sache, aber bequemer (weil intuitiver!) ist das Verhalten der aktuellen Produktion des A-160-5, der eine geänderte Steuerspannung sofort umsetzt (und nicht erst im darauf folgenden Schritt wie die Erstauflage).

Klangbeispiele

Ein A-155 / A-154 Sequencer steuert einen A-111-5 Mini Syntesizer. Das Clock-Signal aus dem A-154 wird als Einangs-Clock für den A-160-5 verwendet. Die obere Spur des A-155 steuert (über einen A-156 Quantizer) die Tonhöhe des A-111-5, die untere Spur des A-155 ist das Steuersignal für das Ratcheting des A-160-5, der die Hüllkurve des A-111-5 auslöst. Die Steuerspannungen für das Ratcheting werden manuell verändert.

Typische Ratcheting-Sequenz mit dem A-160-5.

Neben dem Einsatz als Clock-Multiplier lässt sich der A-160-5 auch in gewissem Rahmen als Audio-Multiplier einsetzen. Dazu wird ein Audiosignal – idealerweise eine Rechteckschwingung – als Clocksignal verwendet, hier von einem A-110-1 VCO.

Audio-Multiplier. Die Audio-Transponierungen werden manuell durchfahren.

Technische Daten

Breite4 TE
Tiefe35 mm
Strombedarf50 mA (+12V) / -0 mA (-12V)