A-123-2 6/12/18/24 dB Highpass

Nachdem der Curtis-Chip CEM3320 nicht mehr lieferbar war, musste Doepfer die Produktion des A-123 24 dB Highpass Filters einstellen. Sehr schade, denn es gab auf dem Markt schlichtweg keine anderen 24 dB Hochpassfilter!

Mittlerweile ist allerdings mit dem AS3320 ein Nachbau verfügbar, so dass es nun wieder ein 24 dB, nein Verzeihung, ein 24 dB oder 18 dB oder 12 dB oder 6 dB Hochpassfilter bei Doepfer gibt. Abgesehen von den zusätzlichen Einzelausgängen für die verschiedenen Flankensteilheiten wurden die Möglichkeiten und Bedienelemente des A-123 1:1 in das neue Modul übernommen. Der Regler „CV2“ für den Steuerspannungseingang wurde außerdem jetzt bipolar ausgelegt, so dass man z.B. eine Hüllkurve gleich am Filter invertieren kann.

Bedienelemente

Eingänge:

CTRL-A123-2-IN

Ausgänge:

CTRL-A123-2-OUT

Regler / Schalter:

CTRL-A123-2-SW-1

Einsatz

Es erscheint zunächst etwas paradox: Ein Hochpassfilter (mit Resonanz!) kann man natürlich zum „Ausdünnen“ eines Signals verwenden, aber gleichzeitig auch, um ein Signal gezielt über die Eigenschwingung des Filters „anzudicken“ – wenn sich die Eckfrequenz des Filters in einem dafür geeigneten Frequenzbereich befindet.

Dazu wird eine relativ hohe Resonanz eingestellt, die Eckfrequenz sollte nicht allzu hoch sein und auch die Modulation der Eckfrequenz sollte eher moderat bleiben.

Klangbeispiele

Vergleich mit dem Vorgänger

Nachdem der A-123-2 der Nachfolger des (selten zu bekommenen) A-123 ist, stellt sich die Frage, ob sich die beiden Module signifikant unterscheiden. Vorweg: Die Unterschiede scheinen mir eher marginal zu sein und stammen wahrscheinlich von unterschiedlicher Feinabstimmung der Module.

Als Eingangsmaterial verwende ich wieder 3 A-110-1 VCOs mit ihren Sägezahnschwingungen, eine davon ist 1 Oktave nach unten transponiert. Die Mischung geht gleichermaßen in das A-123 und das A-123-2 Filter. Die Selbstresonanz beider Filter wurde zuvor auf die gleiche Tonhöhe gestimmt. Beide Filter, sowie die nachgeschalteten A-132-3 VCAs werden vom gleichen A-140 ADSR moduliert.

Wir hören jeweils das A-123 Filter auf der linken Seite, das A-123-2 Filter auf der rechten Seite. Ich starte mit einem Eingangslevel von 5 (der noch nicht verzerren sollte) und einer Resonanz (bzw „Q“ beim A-123-2) von 0. Während ein einfaches Arpeggio spielt, fahre ich manuell die Filtereckfrequenz von unten nach oben und zurück – für beide Filter spannungsgesteuert, damit die Eckfrequenzen in etwa parallel verlaufen.

Im zweiten Durchgang ist das Eingangslevel wieder 5, die Resonanz aber auf 5 erhöht. Wieder der manuelle Filtersweep von unten nach oben und zurück.

Im dritten Durchgang ist das Eingangslevel noch immer bei 5, die resonanz ist aber auf 10 erhöht – gleicher Filtersweep wie zuvor.

Vierter Durchgang: Eingangslevel ist jetzt 10, Resonanz wieder auf 0 reduziert, gleicher Filtersweep wie zuvor.

Fünfter Durchgang: Eingangslevel 10, Resonanz 5, Filtersweep.

Sechster Durchgang: Eingangslevel 10, Resonanz 10, Filtersweep.

Zum Abschluss führe ich nochmal den Filtersweep mit Resonanz 10, aber ohne Eingangssignal (Level = 0) durch, um die pure Eigenresonanz zu demonstrieren.

Links: A-123, rechts: A-123-2. Zum Vergleich wird der 24 dB – Ausgang des A-123-2 verwendet.

Verschiedene Flankensteilheiten

Ein Hochpassfilter mit verschiedenen Flankensteilheiten (24 dB, 18 dB, 12 dB und 6 dB) bekommt man nicht alle Tage. Wie deutlich unterscheiden sich die denn tatsächlich?

Wieder werden die Sägezahnschwingungen unserer drei A-110-1 VCOs verwendet, ein VCO ist wieder 1 Oktave nach unten transponiert. Es wird jeweils nur ein einzelner Ton ausgelöst, mit einer langsamen ADSR-Hüllkurve, die die Filtereckfrequenz von unten nach oben und wieder zurück moduliert (und ebenso den A-132-3 VCA). Ein A-152 hilft mir beim manuellen Umschalten zwischen den vier Filterausgängen. In jedem Durchlauf hören wir zunächst den 24 dB, dann den 18 dB, den 12 dB und schließlich den 6 dB – Ausgang.

Eingangslevel 5, Q = 0.
Eingangslevel 5, Q = 5.
Eingangslevel 5, Q = 10.
Eingangslevel 10, Q = 0.
Eingangslevel 10, Q = 5.
Eingangslevel 10, Q = 10.

Technische Daten

Breite8 TE
Tiefe45 mm
Strombedarf30 mA (+12V) / -30 mA (-12V)

A-123 24dB High Pass

Das Modul wird nicht mehr hergestellt.

Von allen Modulen, die aus dem einen oder anderen Grund nicht mehr produziert werden (meist war es die mangelnde Verfügbarkeit bestimmter Curtis-Chips, wie hier der CEM3320), war das A-123-Filter wahrscheinlich am schwierigsten zu ersetzen. Es gab schlichtweg keine anderen 24dB-Hochpassfilter, weder bei Doepfer noch bei anderen Herstellern.

Mittlerweile hat Doepfer mit dem A-123-2 allerdings einen Nachfolger auf den Markt gebracht, der auf einem Nachbau des CEM3320 basiert und im Funktionsumfang gegenüber dem ursprünglichen Modul deutlich erweitert wurde.

Bedienelemente

Eingänge:

CTRL-A123-IN

Ausgänge:

CTRL-A123-OUT

Regler / Schalter:

CTRL-A123-SW

Einsatz

Es erscheint zunächst etwas paradox: Ein Hochpassfilter (mit Resonanz!) kann man natürlich zum „Ausdünnen“ eines Signals verwenden, aber gleichzeitig auch, um ein Signal gezielt über die Eigenschwingung des Filters „anzudicken“ – wenn sich die Eckfrequenz des Filters in einem dafür geeigneten Frequenzbereich befindet.

Dazu wird eine relativ hohe Resonanz eingestellt, die Eckfrequenz sollte nicht allzu hoch sein und auch die Modulation der Eckfrequenz sollte eher moderat bleiben.

Klangbeispiele

Nachdem es mit dem A-123-2 einen gut ausgestatteten Nachfolger gibt, stellt sich die Frage, ob sich die beiden Module signifikant unterscheiden. Vorweg: Die Unterschiede scheinen mir eher marginal zu sein und stammen wahrscheinlich von unterschiedlicher Feinabstimmung der Module.

Als Eingangsmaterial verwende ich wieder 3 A-110-1 VCOs mit ihren Sägezahnschwingungen, eine davon ist 1 Oktave nach unten transponiert. Die Mischung geht gleichermaßen in das A-123 und das A-123-2 Filter. Die Selbstresonanz beider Filter wurde zuvor auf die gleiche Tonhöhe gestimmt. Beide Filter, sowie die nachgeschalteten A-132-3 VCAs werden vom gleichen A-140 ADSR moduliert.

Wir hören jeweils das A-123 Filter auf der linken Seite, das A-123-2 Filter auf der rechten Seite. Ich starte mit einem Eingangslevel von 5 (der noch nicht verzerren sollte) und einer Resonanz (bzw „Q“ beim A-123-2) von 0. Während ein einfaches Arpeggio spielt, fahre ich manuell die Filtereckfrequenz von unten nach oben und zurück – für beide Filter spannungsgesteuert, damit die Eckfrequenzen in etwa parallel verlaufen.

Im zweiten Durchgang ist das Eingangslevel wieder 5, die Resonanz aber auf 5 erhöht. Wieder der manuelle Filtersweep von unten nach oben und zurück.

Im dritten Durchgang ist das Eingangslevel noch immer bei 5, die resonanz ist aber auf 10 erhöht – gleicher Filtersweep wie zuvor.

Vierter Durchgang: Eingangslevel ist jetzt 10, Resonanz wieder auf 0 reduziert, gleicher Filtersweep wie zuvor.

Fünfter Durchgang: Eingangslevel 10, Resonanz 5, Filtersweep.

Sechster Durchgang: Eingangslevel 10, Resonanz 10, Filtersweep.

Zum Abschluss führe ich nochmal den Filtersweep mit Resonanz 10, aber ohne Eingangssignal (Level = 0) durch, um die pure Eigenresonanz zu demonstrieren.

Links: A-123, rechts: A-123-2. Zum Vergleich wird der 24 dB – Ausgang des A-123-2 verwendet.

Alternativen

Die naheliegendste Alternative ist der Nachfolger A-123-2, der zusätzliche Ausgänge für 18, 12 und 6 dB bietet.

Ansonsten wird man sich normalerweise mit einem 12dB-Hochpassfilter gut behelfen können, zumal es hier etwa mit dem A-121-2 auch Modelle mit der Möglichkeit der Selbstoszillation gibt, die das A-123 natürlich ebenso beherrscht hat. Um den klanglichen Unterschied zwischen 24dB und 12dB Hochpass zu verringern, kann man natürlich auch zwei A-121-2 in Reihe schalten, hat dann allerdings viel Material „im Rennen“ und muss die Eckfrequenzen und andere Parameter der beiden Filter sehr fein angleichen, ganz zu schweigen von Multiples für die parallele Ansteuerung per Steuerspannung.

Technische Daten

Breite8 TE
Tiefe50 mm
Strombedarf20 mA (+12V) / -20 mA (-12V)

A-111-1 High End VCO

Das Modul wird nicht mehr hergestellt.

Der A-111-1 war das High End – Modell unter Doepfers Oszillatoren und ist nur noch auf dem Gebrauchtmarkt erhältlich. Das Nachfolgemodell ist der A-111-2. Im Vergleich etwa zum A-110-1 oder A-110-2 bietet der A-111-1 erweiterte Möglichkeiten zur Synchronisation, einen zusätzlichen Eingang für lineare Frequenzmodulation, sowie einen umfangreicheren Frequenzbereich (12 Oktaven, im Vergleich zu 10 Oktaven beim A-110-1).

Darüber hinaus hat der A-111-1 einen geringfügig anderen Grundklang als der A-110-1 oder A-110-2, die Schwingungsformen (insbesondere Sinus, Dreieck) werden hier zum Teil exakter erzeugt. Der Sägezahn ist übrigens (entgegen der Beschriftung auf dem Panel) ein ansteigender Sägezahn und kein fallender wie beim A-110-1. Das ändert nichts am Klang per se, ist aber interessant bei synchronisierter Mischung mit einem A-110-1-Sägezahn, die dann etwas anders klingt als bei zwei A-110-1. Ansonsten ist auch hier das Sinussignal kein »mathematisch exakter Sinus«, sondern wird aus dem Dreieck-Kern über eine einfache Diodenschaltung gewonnen. Der Nachfolger A-111-2 hat eine überarbeitete Schaltung, die aus dem Dreieck ein deutlich exakteres Sinus-Signal gewinnt.

Wie sieht diese graue Schwingungstheorie nun auf dem Oszilloskop aus?

Sägezahn (aufsteigend)
Puls
Dreieck
Sinus
Rechteck

Ein wenig »sauberer« als der A-110-1 ist der A-111-1 durchaus, aber etwas weniger »exakt«, als man vielleicht erwartet hätte. Klingt er nun auch besser als der A-110-1? »Edler«? Teurer? Ein Bösendorfer-Flügel klingt anders als ein Steinway, aber welcher ist der Bessere? Wie immer ist das ganz klar Geschmackssache und Frage des Einsatzgebiets. Die klanglichen Unterschiede zwischen Oszillatoren sind ansonsten meist deutlich geringer als diejenigen zwischen verschiedenen Filtern.

Der integrierte Schaltkreis CEM3340 (von der Firma Curtis), auf dem der A-111-1 basiert, wurde übrigens bei einigen recht bekannten Synthesizern eingesetzt: Crumar Spirit, Moog Memorymoog, Oberheim OBXa, OBSX, OB8, Roland Jupiter-6, Roland SH-101, Roland MC-202, Roland MKS-80 (rev 4), Sequential Pro-One, Sequential Prophet-5 rev 3, Sequential Prophet-10, Sequential Prophet-600, Sequential T8, Synton Syrinx.

Leider wird dieser integrierte Schaltkreis nicht mehr hergestellt, so dass die Produktion des Moduls eingestellt werden musste.

Bedienelemente

Eingänge:

Systembus: Wie auch beim A-110 ist die Tonhöhe des A-111 über eine am Systembus anliegende Spannung steuerbar. Der Systembus lässt sich mit einem A-185-1 oder A-185-2 ansprechen.

CTRL-A111-1-IN

Ausgänge:

CTRL-A111-1-OUT

Regler / Schalter:

CTRL-A111-1-SW

Sync und lineare FM sind die Stärken des A-111-1

Das Standardeinsatzgebiet des A-111-1 ist vergleichbar mit dem des A-110-1. Aufgrund des deutlich höheren Preises wird er aber sinnvoller für Aufgaben eingesetzt, bei denen er seine speziellen Stärken ausspielen kann: Andere Färbungen bei der Synchronisation, lineare Frequenzmodulation.

Hardsync mit A-111-1.
(Hard-) Sync mit A-110-1 (gleiche Einstellungen bei beiden VCOs).

An den Abbildungen ist gut zu erkennen, dass man bei den beiden Arten der Synchronisation nicht von »besser« oder »schlechter« sprechen kann: Der A-111-1 produziert hier klanglich weitgehend eine Dreieckschwingung mit höherer Frequenz, während der A-110-1 sich schon stark in Richtung »Sägezahn« bewegt, was deutlich mehr Obertöne bedeutet.

Softsync in Verbindung mit FM

Lineare Frequenzmodulation und Softsync.

Die Verbindung aus Softsync und linearer FM ermöglicht phasenstarre Schwingungen zwischen Carrier (dem modulierten VCO) und Modulator – das ist »beinahe« schon so, wie man es von digitalen FM-Synthesizern kennt.

Alle Tipps, die beim A-110-1 Standard VCO beschrieben sind, funktionieren natürlich auch mit dem A-111-1.

Probleme mit anderen Modulen

Bei manchen Modulen, wie z.B. den Frequenzteilern A-115 und A-160-1, sowie beim »EXT CLC«-Eingang im A-117 gibt es mit dem A-111-1 Probleme: Ein paar Sekunden lang wird ein Ausgangssignal aus den Frequenzteilern produziert, dann ist Schluss. Die Ursache liegt in einem technischen Detail (Wechselspannungskoppelung des A-111-1 Ausgangs), das in der aktuellen Produktion (etwa seit Frühjahr 2011) behoben ist.

Bei älteren Modulen kann man einfach einen passiven Abschwächer (der gar nichts abschwächen muss) oder ein fast beliebiges anderes Modul dazwischenschalten, dann ist das Problem behoben.

Alternativen

Die naheliegendste Alternative ist natürlich der direkte Nachfolger A-111-2. neben allen Features des A-111-1 bietet er zusätzlich einen Umschalter zwischen VCO- und LFO-Modus sowie eine verbesserte Schaltung zur Erzeugung der Sinusschwingung aus dem Dreiecks-Kern.

Daneben gibt es den A-111 noch in einer einfacher ausgestatteten Version A-111-3, die auf nur 4 TE erstaunlich viele der Features des A-111-2 mitbringt, lediglich auf den Sinus muss man verzichten (aber selbst den den kann man sich mit dem Sine Converter A-184-2 auf weiteren 4 TE ergänzen). Ganze vier dieser Mini-VCOs sind im Modul A-111-4 untergebracht, der z.B. für polyphone Anwendungen eine gute Basis liefert.

Technische Daten

Breite14 TE
Tiefe65 mm
Strombedarf40 mA (+12V) / -20 mA (-12V)

A-132-3 Dual linear/exponential Voltage Controlled Amplifier

Der A-132-3 Dual Lin. / Exp. VCA verfügt über zwei identische Teilmodule. Beide Verstärker können unabhängig voneinander zwischen linearer und exponentieller Charakteristik umgeschaltet werden.

Dazu kommt eine zwar nicht üppige, aber solide Ausstattung (CV-Eingang mit Abschwächer und manuellem »Gain«-Regler), so dass das Modul sehr vielseitig einsetzbar ist.

Bedienelemente

Eingänge (für jedes der 2 Teilmodule):

CTRL-A132-3-IN

Ausgänge (für jedes der 2 Teilmodule):

CTRL-A132-3-OUT

Regler / Schalter (für jedes der 2 Teilmodule):

CTRL-A132-3-SW

Einer für alle(s)

Das Modul kann sehr gut sowohl für Audiosignale (dann oft mit exponentieller Charakteristik), als auch für die Verstärkung von Steuerspannungen (normalerweise mit linearer Charakteristik) eingesetzt werden.

Modulversionen – von Curtis zu SSM und zurück

In früheren Versionen wurde ein CEM3360 für den VCA eingesetzt, der ab 2010 nicht mehr lieferbar war. Ab Herbst 2010 wurde deshalb dafür ein SSM2164 verwendet.

Der »alte« A-132-3 hat aufgrund einer Begrenzung des Verstärkungsfaktors auf 1 und einer sehr großzügig bemessenen »zulässigen« Eingangsspannung von bis zu +/- 7,5V praktisch verzerrungsfrei gearbeitet, ein toller und völlig unkomplizierter VCA, wenn man den Klang nicht weiter durch den Verstärker „färben“ wollte. Bei fast allen meinen Klangbeispielen hier kommt deshalb ein A-132-2 aus der ursprünglichen Baureihe zum Einsatz.

Bei der auf den SSM-basierten Version kann ab Reglerposition »15 Uhr« (»Gain«-Regler) mit entsprechenden Eingangssignalen ein deutliches Clipping erzeugt werden (stärker als bei den A-130 / A-131 VCAs). Damit ist der A-132-3 gezielt zur »Färbung« einsetzbar und kann zudem tatsächlich über einen Faktor 1 hinaus verstärken (ist also kein »spannungsgesteuerter Abschwächer« wie die meisten anderen VCAs). Dafür ist er aber auch etwas schwieriger zu handhaben, wenn es stets ganz »clean« bleiben soll.

Seit Anfang 2019 ist ein Nachbau des CEM3360 (als AS3360 von Alfa) nun wieder lieferbar, so dass die aktuellen A-132-3 wieder der ursprünglichen, „verfärbungsfreien“ Version entsprechen. Die CEM/AS-basierte Version erkennt man am Aufdruck des Verstärkerbausteins auf der Mitte der Platine:

Die ursprüngliche Version mit dem Curtis 3360 (heute ein baugleicher AS3360), bei der Modulversion mit einem SSM-Baustein sitzt dort ein SSM/V2164.

Eine „Slim Line“ Version des Moduls ist der A-130-2, der nur 4 TE Platz im Rack benötigt.

Technische Daten

Breite8 TE
Tiefe50 mm
Strombedarf30 mA (+12V) / -30 mA (-12V)

A-121 Multimode Filter

Das Modul wird nicht mehr hergestellt.

Das A-121 ist ein frühes, aber sehr gelungenes Filterdesign von Doepfer. Leider ist der verwendete Curtis-Baustein CEM 3320 nicht mehr lieferbar, so dass das Modul nicht mehr im Handel erhältlich ist. Schade, denn es hat einen eigenen Klangcharakter und einige interessante technische Eigenschaften.

Bedienelemente

Eingänge:

CTRL-A121-IN

Ausgänge:

CTRL-A121-OUT

Regler / Schalter:

CTRL-A121-SW

Hochpass mit Selbstoszillation

Eine klangliche Besonderheit: Das A-121 ist eines der wenigen Hochpass-Filter mit der Möglichkeit einer Selbstoszillation (das A-101-1 kann ebenfalls Selbstoszillation im Hochpass-Modus, ist aber ziemlich »empfindlich« bezüglich Einsatzpunkt und Clipping).

Genaues Tracking (1 V / Oktave)

Die Eckfrequenz und damit die Frequenz des Sinustones bei Selbstoszillation ist (zumindest bei meinem Exemplar) sehr genau steuerbar (1 V / Oktave). Damit lässt sich das Filter hervorragend als tonal spielbarer Sinus-Oszillator einsetzen.

Crossfading der Einzelausgänge

Wie alle Multimodefilter ist auch das A-121 sehr vielseitig einsetzbar. Ähnlich wie beim A-106-6 sind durch die 4 Einzelausgänge mit Hilfe eines spannungsgesteuerten Mixers oder Crossfaders auch fließende Übergänge zwischen verschiedenen Filtermodi realisierbar.

Das VCO-Signal wird gefiltert, über den A-134-1 Panner / Crossfader werden zwei Filtermodi überblendet.

Nachfolger

Für das Modul A-121 gibt es einen Nachfolger: Das Multimode-Filter A-121-2. Es ist mit 8 TE deutlich schmäler und bietet grundsätzlich fast die gleiche Funktionalität (einzige Einschränkung: nur ein Eingang zur Modulation der Resonanz). Allerdings klingt es deutlich anders als sein etwas „rauer“ Vorgänger.

Klangbeispiele

In diesem Beispiel werden die Sägezahn-Ausgänge von drei A-110-1 VCOs eingesetzt, ein VCO ist eine Oktave nach unten transponiert. Die VCOs werden von einem A-155 Sequencer gesteuert. Die Audio-Level für den Filtereingang sind vergleichsweise hoch, um die typische Anzerrung durch das Filter zu zeigen. Der Filterausgang geht noch in einen A-132-3 VCA, der von einem A-140 gesteuert wird.

Wir starten mit dem Notchfilter (0:00-1:22), danach Hochpass (1:22-2:53), Bandpass mode (2:53-4:30) und Tiefpass (4:30-6:17). In jedem der 4 Durchgänge beginne ich ohne Resonanz und einem sehr langsamen LFO, der die Filtereckfrequenz moduliert. Dann erhöhe ich langsam die Resonanz bis zum Maximum, füge ADSR-Modulation der Filtereckfrequenz hinzu, verringere die Resonanz wieder langsam bis auf Null und blende schließßlich aus.

Technische Daten

Breite12 TE
Tiefe55 mm
Strombedarf30 mA (+12V) / -20 mA (-12V)

A-111-5 Mini Synthesizer Voice

Der A-111-5 ist kein Oszillator im herkömmlichen Sinn, sondern ein kompletter Mini-Synthesizer mit VCO, VCF, VCA, ADSR und zwei LFOs. Ein »Dark Energy« (erste Generation) für das Modulsystem! Hier ist vieles patchbar, aber bei näherer Betrachtung wird man erkennen, dass einige Signalwege ausschließlich intern geschaltet sind. Es gibt beispielsweise keine Möglichkeit, den Ausgang des Oszillators vor dem Filter abzugreifen. Der A-111-5 ist also kein »Modularsystem im Modularsystem«.

Aber das will der A-111-5 auch gar nicht sein: Er ist eine praktische Lösung, wenn man auf sehr kompaktem Raum noch eine zusätzliche »Stimme« im Modularsystem benötigt, die auch ohne viele Patchkabel unmittelbar und schnell einsetzbar ist. Noch kompakter – allerdings unter Verlust der LFOs und mit vereinfachter Hüllkurve – geht das nur noch mit dem A-111-6. Der A-111-5 beinhaltet einen VCO, ein VCF (24dB Tiefpassfilter), einen VCA, zwei LFOs und einen ADSR-Generator, der Steuerspannungen z.B. für Lautstärkeverlauf oder Filterverlauf erzeugen kann.

Zudem ist das Filter einmalig: Es erlaubt lineare Frequenzmodulation seiner Eckfrequenz und ist – in Selbstoszillation – hervorragend tonal spielbar. Die Rechteck- und Pulsschwingungen des VCOs sind zwar etwas »abgerundet«, in Summe aber noch ziemlich exakt (auch im Vergleich zu A-110-1 oder A-111-1).

Nachdem der A-111-5 aufgrund der fehlenden Verfügbarkeit von CEM3394 – Bausteinen nicht mehr produziert wurde, hat Doepfer das Modul mit dem AS3394 neu aufgelegt.

Stand: Herbst 2020

Wird auch ein externes Signal »abgerundet«?

Öffnet vielleicht das Filter nicht vollständig und sorgt auf diese Weise für die besondere Schwingungsform? Nein, externe Signale werden nicht abgerundet, obwohl sie ja ebenfalls das Filter im A-111-5 durchlaufen müssen. In der Abbildung z.B. ein Rechtecksignal aus einem A-110-1 VCO:

A-111-5: Rechteck – leicht abgerundet.
A-111-5: Puls – ebenfalls abgerundet.
Rechteck eines A-110-1 über den externen Eingang des A-111-5.

Dreieck und Sägezahn

Der Oszillator des A-111-5 hat noch eine weitere Besonderheit: Die Pulsschwingung ist grundsätzlich immer »eingeschaltet«, ein Dreieck oder ein Sägezahn kann per Schalter hinzugefügt werden. Um aber ein reines Dreieck oder einen reinen Sägezahn zu bekommen, muss die Pulsbreite auf 0% oder 100% (»PW«-Regler auf Anschlag links oder rechts) – und somit auf »unhörbar« gestellt werden:

A-111-5: Dreieck.
A-111-5: Sägezahn.

Mischung aus Puls und Dreieck oder Sägezahn

Bei anderen Pulsbreiten-Einstellungen erhält man interessante Mischklänge, die zwar mit jedem anderen VCO ebenfalls erzielbar sind, aber hier eben recht einfach und ohne zusätzliche Patchkabel, Mixer etc.:

A-111-5: Eine Mischung aus Rechteck und Dreieck.
A-111-5: Eine Mischung aus Puls und Sägezahn.

Bedienelemente

Eingänge:

Gate vom Systembus (ohne Abb.): Der ADSR-Generator lässt sich über ein am Systembus anliegendes Gatesignal auslösen. Bei Bedarf kann diese Verbindung intern über einen Jumper aufgetrennt werden. Um ein Gate in einen Systembus einzuspeisen, wird das Modul A-185-1 benötigt.

Mit Ausnahme des ADSR Gate-Eingangs, der die Leitung zu den Gatesignalen des Systembusses unterbricht, werden alle anderen Eingänge (Audio- wie Modulationseingänge) zusätzlich zu den internen Modulations- und Audioquellen addiert.

CTRL-A111-5-IN

Ausgänge:

CTRL-A111-5-OUT

Regler / Schalter (VCO):

CTRL-A111-5-VCO-SW

Regler / Schalter (VCF):

CTRL-A111-5-VCF-SW

Regler / Schalter (VCA, LFO1 und LFO2):

Beide LFOs sind identisch ausgelegt, die Bedienelemente werden daher nur einmal beschrieben.

CTRL-A111-5-VCA-LFO-SW

Regler / Schalter (ADSR):

CTRL-A111-5-ADSR-SW

Ein kompletter Mini-Synthesizer

Der A-111-5 ist die preisgünstigste Möglichkeit, eine komplette Synthesizerstimme in das Modularsystem zu bekommen. Oft kosten bereits VCO und VCF so viel wie dieses Modul, hier sind aber noch zwei einfache LFOs, ein ADSR, ein VCA und ein paar Audio- bzw. CV-Mischer eingebaut. Das ist durchaus praktisch, wenn man mit einem sehr kleinen Modularsystem anfangen möchte.

Bei größeren und großen Systemen kann es attraktiv sein, »mal so eben« eine weitere Stimme einzubauen, die z.B. im Livebetrieb schnell und ohne viel Verkabelung einsatzbereit ist. Und dank der Vor-Verschaltung und der sehr cleveren Konfiguration des Filters lassen sich ohne viel Aufwand erstaunlich komplexe Klänge erzielen.

Aber auch für Einsteiger-Modularsysteme ist der A-111-5 eine Überlegung wert: Man kann das Modul gut als Ausgangsbasis verwenden und dann mit weiteren Modulen (VCO, VCF, Waveshaper usw.) ergänzen.

Grundeinstellung für neue Sounds

Als Ausgangspunkt für neue Sounds können Sie folgende Grundeinstellung ausprobieren.

  • VCO: Tune = 5, Range-Schalter in der Mittelstellung, FM = 0, Source-Schalter daneben in der Mittelstellung (»off«), PW = 0 (damit ist die Pulswelle ausgeschaltet), Shape-Schalter daneben auf Sägezahn, PM = 0, Source-Schalter daneben auf Mittelstellung (»off«). Der VCO wird damit einen Sägezahn in mittlerer Oktavlage erzeugen.
  • VCF: Frq im oberen Drittel, Track-Schalter auf »off«, XM und LM auf 0, Source-Schalter auf Mittelstellung (»off«), Res = 0. Das Filter wird etwas an Höhen abschneiden, aber sonst keine auffälligen Verfärbungen des Klangs erzeugen.
  • VCA: A = 0, AM = 10, Source-Schalter auf ADSR. Der Verstärker wird damit ausschließlich vom Hüllkurvengenerator (ADSR) gesteuert.
  • LFO 1 & LFO 2: Beide Shape-Schalter auf Mittelstellung (»off«). Die LFOs sind damit erst einmal ausgeschaltet, die anderen LFO-Bedienelemente haben bei »off« keine Auswirkung.
  • ADSR: ADSR Range-Schalter auf »mid«, A = 0, D = 0, S = 10, R = 0. Die Hüllkurve ist damit eine einfache Orgel-Hüllkurve (Ton ist bei Tastendruck sofort da und verstummt beim Loslassen der Taste sofort wieder). Der Ausgang des Moduls ist mit der Audio-Anlage verbunden, VCO F Eingang und ADSR Gateeingang werden von einer Tastatur o.Ä. angesteuert.

Jetzt wird geschraubt!

Was Sie jetzt versuchen können:

Bewegen Sie per Hand den Regler »Frq« des Filters: Der Klang wird unterschiedlich dumpf oder brillant werden.

Wählen Sie eine mittlere Eckfrequenz und spielen Sie über einen größeren Tastaturbereich: Die höheren Töne werden dumpfer als die tiefen. Schalten Sie jetzt den Schalter »Track« des Filters auf »half« oder »full«: Die Eckfrequenz wird nun an die gespielte Tonhöhe zum Teil (half) oder ganz (full) angepasst.

Wie verändern sich die Klänge, wenn Sie die Resonanz des Filters erhöhen? Was passiert mit den tiefen Frequenzanteilen? Achten Sie auf den Klang bei sehr hoher Resonanz (Selbstoszillation des Filters).?Probieren Sie andere Hüllkurven: Mehr Attack lässt den Ton langsam lauter werden, Release lässt ihn nach dem Loslassen der Taste ausklingen. Attack = 0, Decay und Sustain auf mittlerem Wert lassen den Ton perkussiver werden, die Lautstärke bleibt bei länger gehaltener Taste auf der mit Sustain eingestellten Lautstärke.

Schalten Sie den ADSR-Generator als XM-Modulationsquelle des Filters ein und variieren Sie mit dem Regler »XM« die Intensität der Modulation.

Schalten Sie einen oder beide LFOs ein und setzen Sie sie als Modulationsquellen für VCO, VCF oder VCA (oder einer Kombination davon) ein.

Mischen Sie die Pulsschwingung des Oszillators (mit PW im mittleren Bereich) dazu. Schalten Sie den Sägezahn aus.

Ein alter Trick geht auch hier

Der Audioausgang der A-111-5 Mini Synthesizer Voice wird mit dem A-180-1 Multiple aufgesplittet und über einen A-183-1 Attenuator wieder in den eigenen »External Audio«-Eingang zurückgeführt.

Versuchen Sie ruhig auch einmal einen alten »Minimoog-Trick«: Der Audioausgang wird über ein Multiple aufgesplittet. Ein Teil geht in die Abhöranlage, ein anderer Teil über einen Abschwächer wieder zurück in den eigenen Audioeingang. Fangen Sie mit stark abgeschwächten Signalen an.

Das Filter als zweiter Oszillator

Die lineare Filter-FM ist ein ungewöhnliches Feature. Zudem ist die Kennlinie zur Steuerung der Eckfrequenz sehr exakt 1 V / Oktave (deutlich genauer als bei vielen anderen Filtern). Aufgrund der beiden unabhängigen externen Steuereingänge für VCO und VCF können Sie das Modul sogar zweistimmig spielen – hier mit einem Sequencer:

Ein A-155 Sequencer steuert sowohl die Frequenz des VCOs, als auch die Frequenz des VCFs im A-111-5 Mini Synthesizer. Der A-156 Quantizer erleichtert dabei die Einstellung auf exakte Tonhöhen.

Im folgenden Klangbeispiel wird dieses Setup demonstriert: Zu Beginn hört man den reinen Sinus des selbstoszillierenden Filters, dann kommt der VCO mit einer Pulswelle dazu, später folgen Modulationen von VCO und VCF. Zum Ende wird die Resonanz immer weiter reduziert, bis schließlich nur noch der VCO zu hören ist.

Schnelle LFOs

Die beiden LFOs reichen ein gutes Stück in den Audiobereich: Eingesetzt zur Frequenzmodulation von VCO (LFO1) und / oder VCF (LFO2), erhalten Sie ein breites Spektrum an metallischen und disharmonischen Klängen für die Abteilung »Special Effects«.

»Live«-Eingriffe erwünscht

Die große Zahl an Umschaltmöglichkeiten (das Modul verfügt immerhin über 12 3fach-Schalter!) ist eine schöne Einladung, um schnell und drastisch in den Klang einzugreifen – das ist etwas, das Sie möglicherweise nicht gerade mit einem Modularsystem verbinden, oder?

Technische Daten

Breite24 TE
Tiefe40 mm
Strombedarf80 mA (+12V) / -50 mA (-12V)