A-163 Voltage Controlled Frequency Divider

Der A-163 ist ein Auslaufmodell und wird künftig nicht mehr hergestellt werden.

Stand: März 2021

Einen Frequenzteiler spannungsgesteuert zu konstruieren, scheint zunächst keine besonders naheliegende Idee. Aber es lassen sich damit sowohl beim Einsatz als Audiofrequenzteiler, als auch bei der Teilung von Clocksignalen sehr lohnende Effekte erzielen.

Bedienelemente

Eingänge:

CTRL-A163-IN

Ausgänge:

CTRL-A163-OUT

Regler / Schalter:

CTRL-A163-SW

Noch ein Suboszillator

Der A-163 VC Frequency Divider kann natürlich auch ganz banal als einfacher Suboszillator eingesetzt werden:

Der Sägezahnausgang des A-110 VCOs wird mit dem Frequenzteilerausgang des A-163 gemischt und in einem A-102 Filter weiter bearbeitet.

Modulation des Teilerfaktors

Interessanter wird es, wenn das Modul seine Stärken ausspielen kann und der Teilerfaktor durch einen ADSR-Generator oder LFO moduliert wird. Dadurch kann sehr lebendig in das Klangspektrum eingegriffen werden.

Ein A-140 Hüllkurvengenerator moduliert sowohl die Eckfrequenz, als auch den Teilerfaktor des A-163 Suboszillators, der dann (je nach Polarität der Modulationsspannung) zu den nächst höheren / niedrigen »Subharmonischen« weiterschaltet.

Klangbeispiele

Das Setup ist wie oben beschrieben: Das Rechtecksignal eines (relativ hoch gestimmten) A-110 VCOs wird in den A-163 geleitet, dessen Ausgangssignal und das Sägezanhsignal des VCOs werden gemischt und in ein A-102 Filter geleitet. Ein ADSR moduliert das Filter, die Frequenzteilung und einen nachgeschalteten A-132-3 VCA.

Der „Manual“ Regler des Frequenzteilers steht etwa auf 2,5, ich starte mit CV etwa 5 (d.h. keine Modulation in der Mittelstellung), dann erhöhe ich den Einfluss des ADRSs auf den A-163, reduziere wieder und gehe in den negativen Bereich unter 5. Dann folgt noch etwas Anpassung des ADSRs (längere Attack-Zeit) und weitere Veränderungen der CV-Intensität beim Frequenzteiler. Alles zusammen wird von einem einfachen Arpeggio (Arturia KeyStep) gesteuert.

Manche Ergebnisse aus dem modulierten Frequenzteiler erinnern doch stark an Spielekonsolen aus den Achziger Jahren…

Anpassung an Clock- oder Audiosignale

Gesetzter Jumper auf der Platine des A-163 VC Frequency Dividers.

Das Modul ist werkseitig auf die Frequenzteilung von Audiomaterial ausgelegt. Wie immer bei frequenzteilern ist auch hier der Einsatz für Clocksignale in interessantes Einsatzgebiet. Damit der A-163 auch sehr langsam getaktete Eingangssignale verarbeiten kann, muss auf der Platine eine Steckbrücke („Jumper“) aufgesteckt werden.

Alternativen

Der A-115 Audio Divider ist ein vergleichbares Modul, das jedoch nicht spannungsgesteuert arbeitet und lediglich bestimmmte, feste Teiler anbietet. Der A-113 Trautonium Subharmonic Generator ist vergleichbar flexibel – wenn auch nicht spannungsgesteuert, aber doch programmierbar und mit vier parallel arbeitenden Frequenzteilern ausgestattet.

Eher für Clocksignale ausgelegt sind die beiden Clock-Divider A-160-1 und A-160-2 (beide sind jedoch ebenfalls nicht über Steuerspannungen kontrollierbar).

Einen 1:1 Ersatz für den spannnungsgesteuerten A-163 gibt es leider noch nicht, daher ist es schade, dass das Modul künftig nicht mehr hergestellt werden wird.

Technische Daten

Breite8 TE
Tiefe45 mm
Strombedarf40 mA (+12V) / -10 mA (-12V)

A-160-1 Clock/Trigger Divider

Der A-160-1 Clock Divider kann aus einem regelmäßigen Triggersignal (einem „Clocksignal“) langsamere Varianten (z.B. halb so schnell, 1/4 so schnell usw.) erzeugen. Oft wird der A-160-1 auch mit dem A-161 Clock Sequencer ergänzt, der ihn als notwendiges Basismodul benötigt.

Aber der A-160-1 ist natürlich ebenso als Audiofrequenzteiler einsetzbar und bietet Suboszillatorsignale bis 6 Oktaven unter dem Eingangssignal. Im Gegensatz z.B. zum A-115 Audio Divider muss man beim A-160-1 die Suboktaven aber noch mit einem Mixer in der Lautstärke aufeinander abstimmen.

Bedienelemente

Eingänge:

CTRL-A160-1-IN

Ausgänge:

CTRL-A160-1-OUT

Teilung von Clocksignalen

Das ist eigentlich der „Standard“ für den A-160-1: Wir verwenden ein gleichmäßig getaktetes Rechtecksignal, das dann auf die Hälfte der Geschwindigkeit, ein Viertel usw. geteilt werden kann. Damit lässt sich dann z.B. ein zweiter A-155 takten, der z.B. nur jeden vierten Schritt weiter schalten soll.

Die Teilung des eingehenden Clocksignals erfolgt immer beim letzten Trigger.

Und genau da ist ein kleines Problem verborgen, das auf der speziellen Art der Frequenzteilung beruht. Nehmen wir als Beispiel die 1/4-Teilung. der A-160-1 „zählt“ die Trigger am Eingang und sobald der vierte Trigger registriert wird, sendet er selbst einen Trigger. Danach geht es wieder bei „1“ weiter.

Das funktioniert absolut exakt, ist aber leider nicht das, was wir „musikalisch“ gewohnt sind. Da müsste der geteilte Trigger nämlich immer „auf der 1“ liegen, und nicht z.B. auf dem letzten Viertel eines Taktes. Interessante Musik lässt sich trotzdem damit machen, sie wird nur etwas anders ausfallen, als wir das vielleicht erwarten würden.

Suboszillator

Neben seinem »eigentlichen« Einsatz als Clock-Teiler für Sequencer-Patches kann der A-160-1 sehr gut als Audio-Suboszillator eingesetzt werden. Aufgrund seiner schmalen Bauweise von nur 4 TE ist das besonders bei kleineren (oder schon recht vollen) Systemen interessant.

Durch den Reset-Eingang lassen sich mit Hilfe eines zweiten Oszillators ungewöhnliche Sync-ähnliche Klänge erzeugen.

Ein zweiter VCO (etwa 3,5 Oktaven tiefer gestimmt) setzt den Frequenzteiler zurück.
Patch-Beispiel zum Oszilloskop-Bild links: Zwei A-110 VCOs steuern den A-160 Clock-Divider im Audiobereich.

Klangbeispiele

Das Klangbeispiel entspricht dem eben beschriebenen Patch: Das Rechtecksignal eines A-110 VCOs wird als Eingangssignal verwendet, das Rechtecksignal eines zweiten – 2 Oktaven tiefer transponierten A-110 als Reset-Trigger. Aus dem A-160 wird der „/4“-Ausgang (2. Suboktave) verwendet. Wir starten mit einem deutlich nach unten verstimmten Reset-VCO (Tune =0), ich erhöhe den Tune Regler langsam bis 10 und dann deutlich schneller wieder zurück zu 0.

Man hört deutlich, wie sich die Interferenzen zwischen den beiden Oszillatoren im Klang auswirken, bis hin zu einem Punkt bei etwa 0:57“, wo der Frequenzteiler Schwierigkeiten hat, überhaupt eine geteilte Frequenz auszugeben.

Alternativen

Als Frequenzteiler kommen neben dem sehr handlichen A-160-1 im Audiobereich natürlich noch der A-115 mit seinen parallel erzeugten vier Suboktaven, der spannungsgesteuerte A-163 sowie der programmierbare A-113 Trautonium Subharmonic Generator in Frage.

Eher auf Clocksignale spezialisiert ist dagegen der A-160-2 Clock/Trigger Divider II, der neben einer Fülle an Ausgangs- und Teileroptionen auch das oben beschriebene Problem der Clock-Teilung anders löst: Hier wird tatsächlich immer „auf der 1“ geteilt.

Technische Daten

Breite4 TE
Tiefe40 mm
Strombedarf40 mA (+12V) / -0 mA (-12V)

A-115 Audio Divider

Der A-115 Audio-Divider ist ein einfacher Frequenzteiler, der Rechtecksignale von 1/2, 1/4, 1/8 und 1/16 der Frequenz des Eingangssignals ausgibt. Das entspricht einem Ton von 1, 2, 3 und 4 Oktaven unter dem Eingangssignal.

Bedienelemente

Eingänge:

CTRL-A115-IN

Ausgänge:

CTRL-A115-OUT

Regler / Schalter:

CTRL-A115-SW

Alternative: A-160

Eine sehr ähnliche Funktionalität bietet das »Clock Divider« Modul A-160 an. Es verfügt zwar nicht über einen Mischer wie das Modul A-115, ist aber mit 4 TE auch nur halb so breit.

Beide Frequenzteiler können Probleme mit älteren Versionen des A-111-1 VCO haben: Aufgrund einer technischen Kleinigkeit (Wechselspannungskopplung) muss bei älteren A-111-1 ein passiver Abschwächer o.Ä. zwischengeschaltet werden. Es ist dabei nicht nötig, das Signal tatsächlich abzuschwächen – lediglich die Schaltung dazwischen ist erforderlich. Das Problem liegt nicht bei den Frequenzteilern, sondern bei den (älteren) A-111-1.

Suboszillator

Der A-115 Audio Divider lässt sich sehr gut als »Suboszillator« zur Ergänzung eines VCOs einsetzen. Dabei wird er idealerweise vom Rechtecksignal des VCOs angesteuert. Sein Ausgangssignal kann dann in den weiteren Audioweg eingespeist werden, z.B. in ein Filter bei einer »Standard«-Synthesizerstimme.

Eine einfache Synthesizerstimme mit Suboszillator. VCF und VCA werden durch ADSR-Generatoren etc. moduliert. Bei Bedarf kann man vor dem Filter noch einen Mixer einfügen, um Sägezahn, Dreieck oder Sinus aus dem A-110 VCO beizumischen.

Einsatz bei LFOs oder als Clockteiler

Miit seinen Mischreglern für die geteilten Frequenzen ist der A-115 prädestiniert, um als Suboszillator im Audiobereich verwendet zu werden. Dafür ist er als „Audio Divider“ auch werkseitig optimiert, der Ausgang ist wechselspannungsgekoppelt.

JP2 gesetzt für Gleichspannungskoppelung.

Trotzdem mag es spannend sein, auch Modulationssignale wie von einem LFO mit Rechteck-Ausgang zu teilen und sich somit ein regelmäßig gestuftes Modulationssignal zu erzeugen. Dafür sollte der Ausgang allerdings darauf ausgerichtet sein, die so entstehenden Gleichspannungen auszugeben (was bei Audiosignalen eher unerwünscht ist). Für eine solche Gleichspannungskoppelung muss auf der Platine der Jumper JP2 gesetzt (aufgesteckt) werden.

Damit kann das Modul im Prinzip auch als Clockdivider eingesetzt werden, die Mischregler machen dabei allerdings nur sehr begrenzt Sinn: Man wird immer nur einen Regler voll aufdrehen, während alle anderen auf 0 stehen.

Was ist das „Originalsignal“?

Vor der Erzeugung der geteilten Frequenzen wird im Modul intern ein Rechtecksignal in der ursprünglichen Frequenz abgeleitet. Das kann – je nach Eingangssignal – deutlich vom ursprünglichen Audiomaterial abweichen.

Das ursprüngliche Eingangssignal: Eine Dreiecksschwingung aus einem A-111-1.
Der A-115 leitet daraus ein Rechtecksignal ab, das wahlweise über den „Orig.“ Regler zur Verfügung steht.

Ab der Produktion des Jahres 2008 existiert ein weiterer Jumper auf dem Board, mit dem man bestimmen kann, ob mit dem „Orig.“ Regler das ursprüngliche Eingangssignal dem gemeinsamen Ausgangssignal zugemischt werden soll, oder ob es stattdessen dieses abgeleitete Signal sein soll. Dafür sitzt der Jumper JP3 auf einer Leiste mit 3 Pins:

Position JP3:Über „Orig.“ gemischtes Signal:
linke 2 Pins (in Richtung Frontplatte)ursprüngliches Eingangssignal
rechte 2 Pinsabgeleitetes Signal
JP3 ist für die Verwendung des abgeleiteten Signals am „Orig.“ Regler gesetzt.

Technische Daten

Breite8 TE
Tiefe40 mm
Strombedarf20 mA (+12V) / -10 mA (-12V)

A-113 Subharmonic Generator

Der Subharmonic Oscillator ist ein sehr ungewöhnliches Modul, das ursprünglich aus dem Trautonium-Projekt von Doepfer stammt. Doepfer hatte die erforderlichen Komponenten eines Trautoniums (einem historischen Vorläufer des heutigen Analog-Synthesizers von Friedrich Trautwein, 1888-1956) innerhalb des A-100 Systems realisiert.

Im Gegensatz zu den meisten anderen Frequenzteilern, die Rechtecksignale ausgeben, erzeugt der A-113 Sägezahnsignale, deren Frequenz sich einen ganzzahligen Teiler unterhalb eines »Master«-Oszillators befindet. Dabei handelt es sich übrigens keineswegs um »mathematisch exakte« Sägezahnsignale, sondern um etwas krumme Schwingungsformen, die mit anderen Oszillatoren nur schwer erzielbar sind.

Das Modul hat 4 solche Frequenzteiler eingebaut, die erzeugten Signale lassen sich entweder individuell abgreifen oder zu einem Summensignal mischen. Die Zusammenstellung der vier Teilerverhältnisse für die Frequenzteiler (z.B. 1/3, 1/5, 1/7 und 1/11) wird dabei als »Mixtur« bezeichnet.

Vier unterschiedliche »Mixturen« (z.B. 1/2, 1/3, 1/8 und 1/16 als erste Mixtur, 1/2, 1/3, 1/4, 1/5 als zweite Mixtur, 1/2, 1/4, 1/8 und 1/16 als dritte Mixtur und viel mal 1/2 als vierte Mixtur) lassen sich als ein Preset speichern und über Gatesignale abrufen. Im Original-Trautonium wurden diese Gate­signale mit Fußtastern erzeugt, im Modularsystem kann man die Phantasie noch etwas weiter schweifen lassen. Es lassen sich insgesamt 50 solcher Presets speichern.

Hinter dem Einsatz von »Subharmonischen« steht die Überlegung, die harmonische Obertonreihe (wie sie z.B. bei Blasinstrumenten natürlich vorkommt) nach unten zu ergänzen. Während die Obertonreihe aus der doppelten, dreifachen, 4-fachen, 5-fachen usw. Frequenz des Grundtons besteht, wird bei den Subharmonischen 1/2, 1/3, 1/4, 1/5 usw. der Frequenz des Grundtons angesetzt. Interessanterweise lassen sich aus der ersten Obertonreihe die Töne des Dur-Akkordes ableiten, aus den theoretisch dazu erfundenen Subharmonischen die Töne des Moll-Akkordes (mit dem Ausgangston in der Quinte).

Bedienelemente

Eingänge:

CTRL-A113-IN

Ausgänge:

CTRL-A113-OUT

Regler / Schalter:

CTRL-A113-SW1

CTRL-A113-SW2

Trautonium – minimalistisch gedacht

Es muss ja nicht gleich ein komplettes Trautonium sein – aber den Subharmonic Generator kann man einfach in einem »Mini-Trautonium« gemeinsam mit einem VCO und einem Formantfilter einsetzen:

Grundausstattung für einfache Trautonium-Klänge, noch durch Modulationsquellen (LFO, ADSR) und einen VCA zu ergänzen. Mit einem Doppel-Fußtaster, der an das »Foot Ctr« Modul angeschlossen wird, kann man zwischen vier vorbereiteten Mixturen des A-113 umschalten.

Ein etwas anderer Sägezahn

Der A-113 Subharmonic Generator erzeugt keine »reinen« Sägezahnsignale, sondern Schwingungen mit gerundeten Flanken. Zudem erzeugt der Subharmonic Generator aus unterschiedlich breiten Pulsschwingungen auch unterschiedliche »Sägezahn-artige« (das Eingangssignal ist jeweils unten dargestellt):

Schmaler Puls als Eingangssignal, das Ergebnis ist halbwegs nahe am Rechteck.
Mittlerer Puls als Eingangssignal ergibt eine »Haifischflosse«.
Breiter Puls: Nahe an einem »normalem« Sägezahn.

Teiler für Triggersignale

Das Modul ist hervorragend für die Erzeugung komplexer Triggermuster geeignet und kann auch die niedrigen Frequenzen von Clocksignalen noch gut verarbeiten. Die erzeugten Sägezahnsignale »funktionieren« gut als Triggersignale. Man kann dann die Triggermuster während einer Performance »livetauglich« verändern, es gibt Speichermöglichkeiten, verschiedene Muster lassen sich per Fußtaster / Gatesignale abrufen, und nicht zuletzt sind die vier Displays eine ausgezeichnete Orientierungshilfe bei »polyrhythmischen Entgleisungen«.

Zusätzliche 5V Stromversorgung

Die erste Version des Moduls (erkennbar am 16-poligen Buskabel) benötigt neben den üblichen +12 V noch eine Stromversorgung von 50 mA an +5 V. Ab dem neuen Netzteil PSU3 wird diese Versorgungsspannung standardmäßig über den Bus bereitgestellt. Ältere Netzteile erfordern z.B. den 5V Low Cost Adapter, der auf einen freien Steckplatz auf dem gleichen Bus wie das Modul aufgesteckt wird und der dann die +5V zur Verfügung stellt.

Der ab Frühjahr 2015 produzierte A-113 benötigt keine zusätzliche 5V Stromversorgung.

Achtung: Den 5V-Adapter keinesfalls bei einem neuen PSU3-Netzteil einsetzen! (Gefahr der Beschädigung von Netzteil bzw. Adapter.)

Technische Daten

Breite26 TE
Tiefe90 mm
Strombedarf30 mA (+12V) / -10 mA (-12V) – alte Version
120 mA (+12V) / -10 mA (-12V) – neue Version
Zusätzlicher Strombedarf100 mA (+5 V) – nur die alte Version, bei der neuen nicht mehr erforderlich